【題目】已知:在平面直角坐標系xOy中,對稱軸為直線x = -2的拋物線經(jīng)過點C(0,2),與x軸交于A(-3,0)、B兩點(點A在點B的左側(cè)).
(1)求這條拋物線的表達式.
(2)連接BC,求∠BCO的余切值.
(3)如果過點C的直線,交x軸于點E,交拋物線于點P,且∠CEO =∠BCO,求點P的坐標.
【答案】(1);(2);(3)點P坐標是(,)或(,).
【解析】
(1)首先設拋物線的解析式,然后根據(jù)對稱軸和所經(jīng)過的點,列出方程,即可得出解析式;
(2)首先求出B坐標,即可得出,,進而得出∠BCO的余切值;
(3)首先根據(jù)的余切值列出等式,得出點E的坐標,然后根據(jù)點C的坐標得出直線解析式,最后聯(lián)立直線和拋物線的解析式即可得出點P坐標.
(1)設拋物線的表達式為.
由題意得:
解得:,.
∴這條拋物線的表達式為.
(2)令y = 0,那么,
解得,.
∵點A的坐標是(3,0)
∴點B的坐標是(1,0).
∵C(0,2)
∴,.
在Rt△ OBC中,∠BOC=90,
∴.
(3)設點E的坐標是(x,0),得OE=.
∵,
∴.
在Rt△EOC中,∴.
∴=4,∴點E坐標是(4,0)或 (4,0).
∵點C坐標是(0,2),
∴.
∴ ,或
解得和(舍去),或和(舍去);
∴點P坐標是(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】某體育看臺側(cè)面的示意圖如圖所示,觀眾區(qū)的坡度為,頂端離水平地面的高度為,從頂棚的處看處的仰角,豎直的立桿上、兩點間的距離為,處到觀眾區(qū)底端處的水平距離為.求:
(1)觀眾區(qū)的水平寬度;
(2)頂棚的處離地面的高度.(,,結(jié)果精確到)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“書香校園”活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:
類別 | 家庭藏書m本 | 學生人數(shù) |
A | 0≤m≤25 | 20 |
B | 26≤m≤50 | a |
C | 51≤m≤75 | 50 |
D | m≥76 | 66 |
根據(jù)以上信息,解答下列問題:
(1)該調(diào)查的樣本容量為 ,a= ;
(2)隨機抽取一位學生進行調(diào)查,剛好抽到A類學生的概率是 ;
(3)若該校有2000名學生,請估計全校學生中家庭藏書不少于76本的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯(lián)結(jié)BE,那么BE的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù) (x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標號:1、2、3、4.
(1)隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標號相同”的概率;
(2)隨機摸出兩個小球,直接寫出“兩次取出的球標號和為奇數(shù)”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.
(1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P是AB上一點,且點P是弦CD的中點.
(1)依題意畫出弦CD,并說明畫圖的依據(jù);(不寫畫法,保留畫圖痕跡)
(2)若AP=2,CD=8,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com