【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸為直線x=1,給出下列結(jié)論: ①b2﹣4ac>0;②2a+b=0;③abc>0;④3a+c>0,
則正確的結(jié)論個數(shù)為( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:①如圖所示,拋物線與x軸有2個交點(diǎn),則b2﹣4ac>0,故①正確;②如圖所示,對稱軸x=﹣ =1,則b=﹣2a,則2a+b=0,故②正確;③拋物線開口方向向下,則a<0,b=﹣2a>0.
拋物線與y軸交于正半軸,則c>0,
所以abc<0,
故③錯誤;④當(dāng)x=3時對應(yīng)的函數(shù)圖象在x軸下方,即y<0,
∴9a+3b+c<0,
而b=﹣2a,
∴3a+c<0,
故④錯誤;
綜上所述,正確的結(jié)論個數(shù)為2個.
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有某種海產(chǎn)品2104千克,尋求合適價格,進(jìn)行8天試銷,情況如下:
第幾天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
銷售價格(元/千克) | 400 | A | 250 | 240 | 200 | 150 | 125 | 120 |
銷售量(千克) | 30 | 40 | 48 | B | 60 | 80 | 96 | 100 |
觀察表中數(shù)據(jù),發(fā)現(xiàn)可以用某種函數(shù)刻畫這種海產(chǎn)品的每天銷售量y(千克)與銷售價格x(元/千克)之間的關(guān)系. 現(xiàn)假設(shè)這批海產(chǎn)品的銷售中,每天銷售量y(千克)與銷售價格x(元/千克)之間都滿足這一關(guān)系.
(1)猜想函數(shù)關(guān)系式: . (不必寫出自變量的取值)并寫出表格中A= ,B= ;
(2)試銷8天后,公司決定將售價定為150元/千克. 則余下海產(chǎn)品預(yù)計(jì) 天可全部售出;
(3)按(2)中價格繼續(xù)銷售15天后,公司發(fā)現(xiàn)剩余海產(chǎn)品必須在不超過2天內(nèi)全部售出,此時需要重新確定一個銷售價格,使后面兩天都按新價格銷售,那么新確定的價格最高不超過多少元/千克才能完成銷售任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OBC是直角三角形,OB與x軸正半軸重合,∠OBC=90°,且OB=1,BC= ,將△OBC繞原點(diǎn)O逆時針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來的m倍,使OB1=OC,得到△OB1C1 , 將△OB1C1繞原點(diǎn)O逆時針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來的m倍,使OB2=OC1 , 得到△OB2C2 , …,如此繼續(xù)下去,得到△OB2017C2017 , 則m的值和點(diǎn)C2017的坐標(biāo)是( )
A.2,(﹣22017 , 22017× )
B.2,(﹣22018 , 0)
C. , (﹣22017 , 22017× )
D. , (﹣22018 , 0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點(diǎn),則線段MN的取值范圍是( 。
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請?jiān)谙铝兴膫關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個頂點(diǎn)的坐標(biāo)A B C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積;
(4)直接與出A′C′與y軸交點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x |
已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三位數(shù)其中a、b、c不全相等且都不為,重新排列各數(shù)位上的數(shù)字可得到一個最大數(shù)和一個最小數(shù),此最大數(shù)和最小數(shù)的差叫做原數(shù)的差數(shù),記為例如,536的差數(shù).
(1)______, ______.
(2)若一個三位數(shù)其中且都不為,求證:能被99整除.
(3)若s、t是各數(shù)位上的數(shù)字均不為0且互不相等兩個三位自然數(shù),s的個位數(shù)字為1,十位數(shù)字是個位數(shù)字的3倍,百位數(shù)字為x,t的百位數(shù)字為y,十位數(shù)字是百位數(shù)字的2倍,t的個位數(shù)字與s的百位數(shù)字相同,若能被3整除,能被11整除,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師給出了如下問題:如圖,∠AOB=80°,OC平分∠AOB,若∠BOD=20°.
(1)請你補(bǔ)全圖形,并求∠COD的度數(shù);
(2)若∠BOD=其他條件不變,請直接寫出∠COD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com