【題目】如圖,中, ,,將沿折疊,使點落在直角邊上的點處,設與邊分別交于點,如果折疊后與均為等腰三角形,那么__________.
【答案】或
【解析】
先確定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因為不確定△BDE是以那兩條邊為腰的等腰三角形,故需討論,①DE=DB,②BD=BE,③DE=BE,然后分別利用角的關系得出答案即可.
∵△CDF中,∠C=90°,且△CDF是等腰三角形,
∴CF=CD,
∴∠CFD=∠CDF=45°,
設∠DAE=x°,由對稱性可知,AF=FD,AE=DE,
∴∠FDA=∠CFD=22.5°,∠DEB=2x°,
分類如下:
①如圖1,
當DE=DB時,∠B=∠DEB=2x°,
由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,
解得:x=22.5°.此時∠B=2x=45°;
②,如圖2,
當BD=BE時,則∠B=(180°-4x)°,
由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°-4x,
解得x=37.5°,此時∠B=(180-4x)°=30°.
綜上所述∠B=45°或30°.
故答案為:45°或30°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=kx(k>0)的圖象與x軸相交所成的銳角為70°,定點A的坐標為(0,8),P為y軸上的一個動點,M、N為函數(shù)y=kx(k>0)的圖象上的兩個動點,則AM+MP+PN的最小值為( 。
A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD.
(1)求證:四邊形ACED是平行四邊形;
(2)若AC=2,CE=4,求四邊形ACEB的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)請畫出△ABC關于y軸對稱的△A'B'C'(其中A',B',C'分別是A,B,C的對應點,不寫畫法).
(2)直接寫出A′,B′,C'三點的坐標:A'_______,B'______,C'______;
(3)△ABC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨機抽取某市一年(以365天計)中的30天的日平均氣溫狀況統(tǒng)計如下:溫度()
溫度() | 10 | 14 | 18 | 22 | 26 | 30 | 32 |
天數(shù) | 3 | 5 | 5 | 7 | 6 | 2 | 2 |
請根據上述數(shù)據回答下列問題:
(1)估計該城市年平均氣溫大約是多少?
(2)上表中的溫度數(shù)據的中位數(shù)是_______眾數(shù)是_________;
(3)計算該城市一年中約有幾天的日平均氣溫為?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與軸交于點A,頂點為點B,點C與點A關于拋物線的對稱軸對稱.
(1)求直線BC的解析式;
(2)點D在拋物線上,且點D的橫坐標為4.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移()個單位后與直線BC只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,已知的三個頂點的坐標分別為,,.
(1)將向上平移個單位長度,再向左平移個單位長度,得到,請畫出(點,,的對應點分別為,,)
(2)請畫出與關于軸對稱的(點,,的對應點分別為,,)
(3)請寫出,的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關于x軸對稱,則a= ,b= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com