【題目】如圖,四邊形ABCD,BE、DF分別平分四邊形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
(1)如圖,若α+β=120°,求∠MBC+∠NDC的度數(shù);
(2)如圖,若BE與DF相交于點G,∠BGD=30°,請寫出α、β所滿足的等量關(guān)系式;
(3)如圖,若α=β,判斷BE、DF的位置關(guān)系,并說明理由.
【答案】(1)120°; (2)β﹣α=60° 理由見解析;(3)平行,理由見解析.
【解析】
(1)利用四邊形的內(nèi)角和求出∠ABC與∠ADC的和,利用角平分線的定義以及α+β=120°推導(dǎo)即可;
(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分線的定義得∠CBG+∠CDG=(α+β),在△BCD中利用三角形的內(nèi)角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的內(nèi)角和定理得出關(guān)于α、β的等式整理即可得出結(jié)論;
(3)延長BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分線的定義得∠CBE+∠CDH=(α+β),利用三角形的外角的性質(zhì)得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=(α+β)計算即可得出一組內(nèi)錯角相等.
(1)解:(1)在四邊形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,
∴∠ABC+∠ADC=360°-(α+β),
∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°
∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,
∵α+β=120°,
∴∠MBC+∠NDC=120°;
(2)β﹣α=60°
理由:如圖1,連接BD,
由(1)得,∠MBC+∠NDC=α+β,
∵BE、DF分別平分四邊形的外角∠MBC和∠NDC,
∴∠CBG=∠MBC,∠CDG=∠NDC,
∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,
在△BDG中, ∠GBD+∠GDB+∠BGD=180°,
∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,
∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,
∴(α+β)+180°﹣β+30°=180°,
∴β﹣α=60°,
(3)平行,
理由:如圖2,延長BC交DF于H,
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分別平分四邊形的外角∠MBC和∠NDC,
∴∠CBE=∠MBC,∠CDH=∠NDC,
∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
∵∠BCD=∠CDH+∠DHB,
∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,
∴∠CBE+β﹣∠DHB=(α+β),
∵α=β,
∴∠CBE+β﹣∠DHB=(β+β)=β,
∴∠CBE=∠DHB,
∴BE∥DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起.
(1)如圖1,若∠BOD=25°,則∠AOC= °;若∠AOC=125°,則∠BOD= °;
(2)如圖2,若∠BOD=50°,則∠AOC= °;若∠AOC=140°,則∠BOD= °;
(3)猜想∠AOC與∠BOD的大小關(guān)系: ;并結(jié)合圖(1)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌運動鞋經(jīng)銷商購進A、B兩種新式運動鞋,按標(biāo)價售出后可獲利48000元.已知購進A種運動鞋的數(shù)量是B種運動鞋數(shù)量的2倍,這兩種運動鞋的進價、標(biāo)價如下表所示.
款式 價格 | A | B |
進價(元/雙) | 100 | 120 |
標(biāo)價(元/雙) | 250 | 300 |
(1)這兩種運動鞋各購進多少雙?
(2)如果A種運動鞋按標(biāo)價9折出售,B種運動鞋按標(biāo)價8折出售,那么這批運動鞋全部售出后,經(jīng)銷商所獲利潤比按標(biāo)價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自開展“學(xué)生每天鍛煉1小時”活動后,我市某中學(xué)根據(jù)學(xué)校實際情況,決定開設(shè)A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學(xué)生最喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請將兩個統(tǒng)計圖補充完整;
(3)在本次調(diào)查的學(xué)生中隨機抽取1人,他喜歡“跑步”的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正確的是( ).
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班購買一些乒乓球和乒乓球拍,了解信息如下:甲、乙兩家商店出售同種品牌的乒乓球和乒乓球拍,乒乓球拍每副定價30元,乒乓球每盒定價5元.經(jīng)洽談,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折出售,該班需球拍5副,乒乓球若干盒(不少于5盒)問:
(1)當(dāng)購買乒乓球x盒時,兩種優(yōu)惠辦法各應(yīng)付款多少元?(用含x的代數(shù)式表示).
(2)如果要購買15盒乒乓球,請你去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,OC OD,OC OD ,DC 的延長線交 y 軸正半軸上點 B ,過點C 作CA BD 交 x 軸負(fù)半軸于點A .
(1)如圖1,求證:OAOB
(2)如圖1,連AD,作OM ∥AC交AD于點M,求證: BC 2OM
(3)如圖2,點E為OC 的延長線上一點,連DE,過點D作DFDE且DF DE ,連CF 交 DO 的延長線于點G 若OG 4,求CE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駕駛員血液中每毫升的酒精含量大于或等于200微克即為酒駕,某研究所經(jīng)實驗測得:成人飲用某品牌38度白酒后血液中酒精濃度y(微克/毫升)與飲酒時間x(小時)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中酒精濃度上升和下降階段y與x之間的函數(shù)表達(dá)式.
(2)問血液中酒精濃度不低于200微克/毫升的持續(xù)時間是多少小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com