【題目】如圖1,拋物線(xiàn)y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(﹣1,0)、B(3,0)、點(diǎn)C三點(diǎn).

(1)試求拋物線(xiàn)的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線(xiàn)上,連接BC,BD.試問(wèn),在對(duì)稱(chēng)軸左側(cè)的拋物線(xiàn)上是否存在一點(diǎn)P,滿(mǎn)足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過(guò)程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時(shí)間為t秒,試求S與t之間的函數(shù)關(guān)系式?

【答案】
(1)

解:將A(﹣1,0)、B(3,0)代入拋物線(xiàn)y=ax2+bx+3(a≠0),

解得:a=﹣1,b=2.

故拋物線(xiàn)解析式為:y=﹣x2+2x+3


(2)

解:存在

將點(diǎn)D代入拋物線(xiàn)解析式得:m=3,

∴D(2,3),

令x=0,y=3,

∴C(0,3),

∴OC=OB,

∴∠OCB=∠CBO=45°,

如下圖,設(shè)BP交y軸于點(diǎn)G,

∵CD∥x軸,

∴∠DCB=∠BCO=45°,

在△CDB和△CGB中:

∵∠

∴△CDB≌△CGB(ASA),

∴CG=CD=2,

∴OG=1,

∴點(diǎn)G(0,1),

設(shè)直線(xiàn)BP:y=kx+1,

代入點(diǎn)B(3,0),

∴k=﹣ ,

∴直線(xiàn)BP:y=﹣ x+1,

聯(lián)立直線(xiàn)BP和二次函數(shù)解析式:

解得: (舍),

∴P(﹣


(3)

解:直線(xiàn)BC:y=﹣x+3,直線(xiàn)BD:y=﹣3x+9,

當(dāng)0≤t≤2時(shí),如下圖:

設(shè)直線(xiàn)C′B′:y=﹣(x﹣t)+3

聯(lián)立直線(xiàn)BD求得F( , ),

S=SBCD﹣SCCE﹣SCDF

= ×2×3﹣ ×t×t﹣ ×(2﹣t)(3﹣

整理得:S=﹣ t2+3t(0≤t≤2).

當(dāng)2<t≤3時(shí),如下圖:

H(t,﹣3t+9),I(t,﹣t+3)

S=SHIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)

整理得:S=t2﹣6t+9(2<t≤3)

綜上所述:S=


【解析】(1)將點(diǎn)A、B代入拋物線(xiàn)解析式,求出a、b值即可得到拋物線(xiàn)解析式;(2)根據(jù)已知求出點(diǎn)D的坐標(biāo),并且由線(xiàn)段OC、OB相等、CD∥x軸及等腰三角形性質(zhì)證明△CDB≌△CGB,利用全等三角形性質(zhì)求出點(diǎn)G的坐標(biāo),寫(xiě)出直線(xiàn)BP解析式,聯(lián)立二次函數(shù)解析式,求出點(diǎn)P坐標(biāo);(3)分兩種情況,第一種情況重疊部分為四邊形,利用大三角形減去兩個(gè)小三角形求得解析式,第二種情況重疊部分為三角形,可利用三角形面積公式求得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每小正方形的邊長(zhǎng)為個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

(1)畫(huà)出邊上的中線(xiàn)

(2)畫(huà)出向右平移個(gè)單位后得到的;

(3)圖中的關(guān)系是 ;

(4)能使的格點(diǎn)(不同于點(diǎn)),共有 個(gè),在圖中分別用、、表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說(shuō)法錯(cuò)誤的是(

A.函數(shù)有最小值
B.當(dāng)﹣1<x<3時(shí),y>0
C.當(dāng)x<1時(shí),y隨x的增大而減小
D.對(duì)稱(chēng)軸是直線(xiàn)x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀思考

我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義,由此我們可進(jìn)一步地來(lái)研究數(shù)軸上任意兩個(gè)點(diǎn)之間的距離,一般地,如果數(shù)軸上兩點(diǎn)A、B 對(duì)立的數(shù)用a,b表示,那么這兩個(gè)點(diǎn)之間的距離AB=|a﹣b|.也可以用兩點(diǎn)中右邊的點(diǎn)所表示數(shù)的減去左邊的點(diǎn)所表示的數(shù)來(lái)計(jì)算,例如:數(shù)軸上P,Q兩點(diǎn)表示的數(shù)分別是﹣1和2,那么P,Q兩點(diǎn)之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應(yīng)用

如圖,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿(mǎn)足|a+3|+(b﹣2)2=0

(1)求線(xiàn)段AB的長(zhǎng);

(2)如圖,點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,

①求線(xiàn)段BC的長(zhǎng);

②在數(shù)軸上是否存在點(diǎn)P使PA+PB=BC?若存在,直接寫(xiě)出點(diǎn)P對(duì)應(yīng)的數(shù):若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱(chēng)這樣的數(shù)為不變心的數(shù).實(shí)際上,上述結(jié)論可減弱為:可以表示為兩個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個(gè)整數(shù)平方之和.

【動(dòng)手一試】

試將改成兩個(gè)整數(shù)平方之和的形式. ;

【閱讀思考】

在數(shù)學(xué)思想中,有種解題技巧稱(chēng)之為無(wú)中生有.例如問(wèn)題:將代數(shù)式改成兩個(gè)平方之差的形式.解:原式

【解決問(wèn)題】

請(qǐng)你靈活運(yùn)用利用上述思想來(lái)解決不變心的數(shù)問(wèn)題:將代數(shù)式改成兩個(gè)整數(shù)平方之和的形式(其中a、bc、d均為整數(shù)),并給出詳細(xì)的推導(dǎo)過(guò)程﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題.

程大位,明代商人,珠算發(fā)明家被稱(chēng)為珠算之父、卷尺之父.少年時(shí),讀書(shū)極為廣博,對(duì)數(shù)學(xué)頗感興趣,60歲時(shí)完成其杰作《直指算法統(tǒng)宗》簡(jiǎn)稱(chēng)《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè)大小和尚各幾丁?意思是100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè)小和尚3人分1個(gè),正好分完.試問(wèn)大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,延長(zhǎng)CB到點(diǎn)M,使BM=1,連接AM,過(guò)點(diǎn)B作BN⊥AM,垂足為N,O是對(duì)角線(xiàn)AC,BD的交點(diǎn),連接ON,則ON的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BD平分∠ABC. 請(qǐng)補(bǔ)全圖形后,依條件完成解答.

(1)在直線(xiàn)BC下方畫(huà)∠CBE,使∠CBE與∠ABC互補(bǔ);

(2)在射線(xiàn)BE上任取一點(diǎn)F,過(guò)點(diǎn)F畫(huà)直線(xiàn)FGBDBC于點(diǎn)G;

(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ACB=90°,BC=4,如圖1,點(diǎn)P從C出發(fā)向點(diǎn)B運(yùn)動(dòng),點(diǎn)R是射線(xiàn)PB上一點(diǎn),PR=3CP,過(guò)點(diǎn)R作QR⊥BC,且QR=aCP,連接PQ,當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)CP=x,△ABC與△PQR重合部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤ , <x≤m,m<x≤n時(shí),函數(shù)的解析式不同).
(1)a的值為;
(2)求出S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案