【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為不變心的數(shù).實際上,上述結(jié)論可減弱為:可以表示為兩個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個整數(shù)平方之和.

【動手一試】

試將改成兩個整數(shù)平方之和的形式. ;

【閱讀思考】

在數(shù)學(xué)思想中,有種解題技巧稱之為無中生有.例如問題:將代數(shù)式改成兩個平方之差的形式.解:原式

【解決問題】

請你靈活運用利用上述思想來解決不變心的數(shù)問題:將代數(shù)式改成兩個整數(shù)平方之和的形式(其中a、bc、d均為整數(shù)),并給出詳細的推導(dǎo)過程﹒

【答案】(1);

(2),證明見解析.

【解析】試題分析:利用完全平方式的性質(zhì)進行證明;由題意可設(shè)m=a2+b2,n=c2+d2,求出mn的乘積,從而發(fā)現(xiàn)規(guī)律.

試題解析:1

2,證明如下:

證明:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級學(xué)生開展測量物體高度的實踐活動,他們要測量學(xué)校一幢教學(xué)樓的高度,如圖,他們先在點C測得教學(xué)樓AB的頂點A的仰角為30°,然后向教學(xué)樓前進20米到達點D,又測得點A的仰角為45°,請根據(jù)這些數(shù)據(jù),求這幢教學(xué)樓的高度.(最后結(jié)果精確到1米,參考數(shù)據(jù) ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: , 點E的坐標:
(2)若二次函數(shù)y=﹣ x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是AC上的一個動點(P與點A、C不重合)連結(jié)PB、PD,設(shè)l是△PBD的周長,當(dāng)l取最小值時,求點P的坐標及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校20周年校慶時,需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達C處,此時,在AF延長線上的點B處測得氣球和旗桿EF的頂點E在同一直線上.

(1)已知旗桿高為12米,若在點B處測得旗桿頂點E的仰角為30°,A處測得點E的仰角為45°,試求AB的長(結(jié)果保留根號);
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.

(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時間為t秒,試求S與t之間的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點F.若AB=2,∠ABC=60°,則AE的長為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( 。

A. BD=DC,AB=AC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

同步練習(xí)冊答案