【題目】如圖,將邊長為4的正方形ABCD沿著折痕EF折疊,使點(diǎn)B落在邊AD的中點(diǎn)G處.
(1)求線段BE的長;
(2)連接BF、GF,求證:BF=GF;
(3)求四邊形BCFE的面積.
【答案】(1);(2)證明見解析;(3).
【解析】
(1)由折疊的性質(zhì)可得,,設(shè),則,在中利用勾股定理求出的值;
(2)根據(jù)折疊的性質(zhì)即可求解;
(3)四邊形是梯形,要求其面積需要得出的長,可通過求出的長度,進(jìn)行求解.
(1)由題意,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)分別關(guān)于直線對稱,
,,
設(shè),則,
四邊形是正方形,
,
,
落在邊的中點(diǎn)處,
,
,
解得:,
.
(2)將邊長為的正方形沿著折痕折疊,使點(diǎn)落在邊的中點(diǎn)處,連接BF、GF,在△BFE和△GFE中,BE=GE,∠BEF=∠GEF,EF=EF,∴△BFE≌△GFE
;
(3)
四邊形是正方形,
,,
點(diǎn)、分別在、邊上,
四邊形是直角梯形,
,,
,
,,
,,
,
,
在中, ,
,,
,
,
,
,
在中, ,
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:在學(xué)習(xí)了《7.4實(shí)踐與探索》之后,小亮買了若干塊完全相同的長方形拼圖(圖1),第一次他用2塊圖1的長方形拼出了圖2所示的正方形,第二次他又用4塊圖1的長方形拼出了圖3所示的正方形(中間留有一個(gè)正方形小洞,即陰影區(qū)域),經(jīng)過測量,他發(fā)現(xiàn)圖3的大正方形的邊長為.
(1)請你幫小亮求出圖1中長方形的長和寬;
(2)請你參照圖3,用圖1的長方形拼出一個(gè)面積為的正方形(中間留有一個(gè)正方形小洞),請畫出你拼出的大正方形(要求畫出兩個(gè)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD在平面直角坐標(biāo)系的位置如圖所示,將四邊形ABCD先向下平移2個(gè)單位,再向左平移3個(gè)單位得到四邊形A1B1C1D1,解答下列各題:
(1)請?jiān)趫D中畫出四邊形A1B1C1D1;
(2)請寫出四邊形A1B1C1D1的頂點(diǎn)B1、D1坐標(biāo);
(3)請求出四邊形A1B1C1D1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、D三點(diǎn)在一條直線上,AC平分∠DCE,且與BE的延長線交于點(diǎn)A。
(1)如果∠A=35°,∠B=30°,求∠BEC的度數(shù);
(2)小明經(jīng)過改變∠A,∠B的度數(shù)進(jìn)行多次探究,得出A、B、BEC三個(gè)角之間存在固定的數(shù)量關(guān)系,請用一個(gè)等式表示出這個(gè)關(guān)系,并進(jìn)行證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把邊長為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長是( )
A. 6B. 6C. 3D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸平行于y軸的拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,過C作CD∥x軸,與拋物線交于點(diǎn)D.若OA=1,CD=4,則線段AB的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知某船于上午8點(diǎn)在A處觀測小島C在北偏東60°方向上.該船以每小時(shí)40海里的速度向東航行到B處,此時(shí)測得小島C在北偏東30°方向上.船以原速度再繼續(xù)向東航行2小時(shí)到達(dá)小島C的正南方D點(diǎn).求船從A到D一共走了多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時(shí),求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次試驗(yàn)中,小明把一根彈簧的上端固定,在其下端懸掛物體,測得彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:
所掛物體質(zhì)量 | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧的長度 | 8 | 10 | 12 | 14 | 16 | 18 |
下列說法錯(cuò)誤的是( )
A.彈簧的長度隨所掛物體質(zhì)量的變化而變化,所掛物體質(zhì)量是自變量,彈簧長度是因變量
B.不掛物體時(shí),彈簧的長度為
C.彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系式是
D.在彈性限度內(nèi),當(dāng)所掛物體的質(zhì)量為時(shí),彈簧的長度為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com