【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=(k 為常數(shù), 且 k≠0)的圖象交于 A(1,a)、B(b,1)兩點.
(1)求點 A、B 的坐標(biāo)及反比例函數(shù)的表達式;
(2)在 x 軸上找一點,使 PA+PB 的值最小,求滿足條件的點 P 的坐標(biāo).
【答案】(1);(2)
【解析】
(1)將x=1代入直線AB的函數(shù)表達式中即可求出點A的坐標(biāo),由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出反比例函數(shù)的表達式,聯(lián)立兩函數(shù)表達式成方程組,通過解方程組即可求出點B的坐標(biāo);
(2)作B點關(guān)于x軸的對稱點B′(2,-1),連接AB’,交x軸于點P,連接PB,由兩點之間線段最短可得出此時PA+PB取最小值,根據(jù)點A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的函數(shù)表達式,再利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點P的坐標(biāo).
在一次函數(shù)的圖象上,
,
.
在反比例為常數(shù),且的圖象上,
,
反比例函數(shù)的表達式為.
聯(lián)立一次函數(shù)與反比例函數(shù)關(guān)系式成方程組,得:
,解得:,
.
作B點關(guān)于x軸的對稱點,連接,交x軸于點P,連接PB,如圖所示.
點B、關(guān)于x軸對稱,
.
點A、P、三點共線,
此時取最小值.
設(shè)直線的函數(shù)表達式為,
將代入,
,解得:,
直線的函數(shù)表達式為.
當(dāng)時,,
滿足條件的點P的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長為2016個單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計的一端固定在點A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在R△ABC中,∠ACB=90°,AC=6,BC=8,E為AC上一點,且AE=,AD平分∠BAC交BC于D.若P是AD上的動點,則PC+PE的最小值等于( )
A.B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點,且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖形中每一小格正方形的邊長為1,已知△ABC
(1)AC的長等于 .(結(jié)果保留根號)
(2)將△ABC向右平移2個單位得到△A′B′C′,則A點的對應(yīng)點A′的坐標(biāo)是 ;
(3)畫出將△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C1,并寫出A點對應(yīng)點A1的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論中,正確的結(jié)論的個數(shù)( )
①;②;③;④; ⑤.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com