【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)△BDM為直角三角形時,求的值.
【答案】解:(1)令y=0,則 ,
∵m<0,∴,解得:, 。
∴A(,0)、B(3,0)。
(2)存在。理由如下:
∵設(shè)拋物線C1的表達(dá)式為(),
把C(0,)代入可得,。
∴C1的表達(dá)式為:,即。
設(shè)P(p,),
∴ S△PBC = S△POC + S△BOP –S△BOC =。
∵<0,∴當(dāng)時,S△PBC最大值為。
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=。
∵∠MBD<90°, ∴討論∠BMD=90°和∠BDM=90°兩種情況:
當(dāng)∠BMD=90°時,BM2+ DM2= BD2 ,即+=,
解得:, (舍去)。
當(dāng)∠BDM=90°時,BD2+ DM2= BM2 ,即+=,
解得:, (舍去) 。
綜上所述, 或時,△BDM為直角三角形。
【解析】(1)在中令y=0,即可得到A、B兩點(diǎn)的坐標(biāo)。
(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC = S△POC + S△BOP –S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值。
(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OA⊥OC,點(diǎn)D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長;
(3)P是半徑OC上一動點(diǎn),連結(jié)AP、PD,請求出AP+PD的最小值,并說明理由.
(解答上面各題時,請按題意,自行補(bǔ)足圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P在該拋物線上(P點(diǎn)與A、B兩點(diǎn)不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點(diǎn)P為拋物線y=ax2+bx+c(a≠0)的勾股點(diǎn).
(1)直接寫出拋物線y=-x2+1的勾股點(diǎn)的坐標(biāo).
(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.
(3)在(2)的條件下,點(diǎn)Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(diǎn)(異于點(diǎn)P)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,要把小河里的水引到田地A處,就作AB⊥l(垂足為B),沿AB挖水溝,水溝最短.理由是___________.
(2)把命題“平行于同一直線的兩直線平行”寫成“如果……,那么……”的形式._____________________________ .
(3)比較大小:______ .
(4)已知與是同類項,則m-3n的平方根是___.
(5)已知點(diǎn)P的坐標(biāo)為(3a+6,2﹣a),且點(diǎn)P到兩坐標(biāo)軸的距離相等,則點(diǎn)P的坐標(biāo)是______.
(6) 如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2018次運(yùn)動后,動點(diǎn)P的坐標(biāo)是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點(diǎn)O,AB=AC,點(diǎn)E是BD上一點(diǎn),且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩段材料,回答下列各題:
材料一:規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如:,等,類比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方”,記作,讀作“的圈4次方”,一般地,把記作,讀作“的圈次方”.
材料二:求值:. 解:設(shè),將等式兩邊同時乘以2得:將下式減去上式得即
(1)直接寫出計算結(jié)果:
(2)我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?試一試:將下列運(yùn)算結(jié)果直接寫成冪的形式: (且為正整數(shù))
(3)計算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)分別為H、G,直線HG交OA、OB于點(diǎn)C、D,若∠HOG=80°,則∠CPD=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c+1。
(1)當(dāng)b=1時,求這個二次函數(shù)的對稱軸的方程;
(2)若c=﹣b2﹣2b,問:b為何值時,二次函數(shù)的圖象與x軸相切?
(3)若二次函數(shù)的圖象與x軸交于點(diǎn)A(x1,0),B(x2,0),且x1<x2,b>0,與y軸的正半軸交于點(diǎn)M,以AB為直徑的半圓恰好過點(diǎn)M,二次函數(shù)的對稱軸l與x軸、直線BM、直線AM分別交于點(diǎn)D、E、F,且滿足=,求二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某廠制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個數(shù)比制成乙盒的個數(shù)少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料。
(1)求制作每個甲盒、乙盒各用多少材料?
(2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請寫出所需材料總長度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com