【題目】已知:∠A=(90+x)°,∠B=(90﹣x)°,∠CED=90°,射線EF∥AC,2∠C﹣∠D=m.(1)判斷AC與BD的位置關(guān)系,并說明理由.
(2)如圖1,當(dāng)m=30°時,求∠C、∠D的度數(shù).
(3)如圖2,求∠C、∠D的度數(shù)(用含m的代數(shù)式表示).
【答案】(1)AC∥BD,理由見解析;(2)∠C=40°,∠D=50°;(3)∠C=90°+m,∠D=180°+m
【解析】
(1)根據(jù)同旁內(nèi)角互補兩直線平行求出AC∥BD;
(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠CEF=∠C,∠DEF=∠D,然后列出關(guān)于∠C、∠D的二元一次方程組求解即可;
(3)根據(jù)兩直線平行,內(nèi)錯角相等可得∠CEF=∠C,∠DEF=∠D,再根據(jù)∠CED=∠DEF-∠CEF得到∠D-∠C=90°,然后求解即可.
(1)∵∠A+∠B=(90+x)°+(90x)°=180°,
∴AC∥BD
(2)∵EF∥AC,
∴AC∥EF∥BD,
∴∠CEF=∠C,∠DEF=∠D,
∵∠CED=90,
∴∠C+∠D=90,
聯(lián)立
,
解得
(3)∵EF∥AC,
∴AC∥EF∥BD,
∴∠CEF=∠C,∠DEF=∠D,
∵∠CED=∠DEF-∠CEF=90°,
∴∠D-∠C=90°,①
又2∠C∠D=m ②
聯(lián)立,① ②
解得∠C=90°+m,∠D=180°+m
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實際問題
某批發(fā)商以元/ 的成本價購入了某產(chǎn)品,據(jù)市場預(yù)測,該產(chǎn)品的銷售價(元/ )與保存時間(天)的函數(shù)關(guān)系為,但保存這批產(chǎn)品平均每天將損耗.另外,批發(fā)商每天保存該批產(chǎn)品的費用為元.已知該產(chǎn)品每天的銷量不超過,若批發(fā)商希望通過這批產(chǎn)品賣出獲利元,則批發(fā)商應(yīng)在保存該產(chǎn)品多少天時一次性賣出?
小明的思路及解答
本題的相等關(guān)系是:
銷售價銷量成本價銷量保存費用獲利.
解:設(shè)批發(fā)商應(yīng)在保存該產(chǎn)品天時一次性賣出可獲利元.
根據(jù)上面的相等關(guān)系,
得.
解這個方程,得, .
當(dāng)時, (不合題意,舍去),
當(dāng)時, .
答:批發(fā)商應(yīng)在保存該產(chǎn)品天時一次性賣出可獲利元.
數(shù)學(xué)老師的批改
數(shù)學(xué)老師在小明的解答中畫了一條橫線,并打了一個“”.
你的觀點及做法
()請指出小明錯誤的原因.
()重新給出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=6,點E在AD邊上,且AE=4,EF⊥BE交CD于點F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊, , 是上一點, , 是邊上一動點,將梯形沿直線折疊, 的對應(yīng)點為,當(dāng)的長度最小時, 的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“年冬季越野賽”在濱河學(xué)校操場舉行,某運動員從起點學(xué)校東門出發(fā),途徑濕地公園,沿比賽路線跑回終點學(xué)校東門.沿該運動員離開起點的路程(千米)與跑步時間(時間)之間的函數(shù)關(guān)系如圖所示,其中從起點到濕地公園的平均速度是千米/分鐘,用時分鐘,根據(jù)圖像提供的信息,解答下列問題:
()求圖中的值;
()組委會在距離起點千米處設(shè)立一個拍攝點,該運動員從第一次過點到第二次過點所用的時間為分鐘.
①求所在直線的函數(shù)解析式;
②該運動員跑完全程用時多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,分別探索下列四個圖形中∠P、∠A、∠C,發(fā)現(xiàn)有如下三種數(shù)量關(guān)系:∠A+∠C =∠P ;∠P+∠A =∠C ;∠P+∠C =∠A,請你選擇其中的兩種數(shù)量關(guān)系說明理由.
(1)我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
(2) 我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, △ABC三個頂點的位置如圖(每個小正方形的邊長均為1).
(1)請畫出△ABC沿x軸向右平移3個單位長度,再沿y軸向上平移2個單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)
(2)直接寫出A′、B′、C′三點的坐標(biāo): A′(_____,______); B′(_____,______); C′(_____,______)。
(3)求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是( 。
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com