【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C、D,PE是⊙O的切線,E為切點,連接AE,交CD于點F.
(1)若⊙O的半徑為8,求CD的長;
(2)若PF=13,求PE的長;
(3)在(2)的條件下,sinA=,求EF的長.
【答案】(1);(2)13;(3)10
【解析】
(1)首先連接OD,由直線PD垂直平分⊙O的半徑OA于點B,⊙O的半徑為8,可求得OB的長,又由勾股定理,可求得BD的長,然后由垂徑定理,求得CD的長;
(2)由PE是⊙O的切線,易證得∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,繼而可證得∠PEF=∠PFE,根據(jù)等角對等邊的性質(zhì),可得PE=PF,求得PE的長;
(3)首先過點P作PG⊥EF于點G,易得∠FPG=∠A,即可得FG=PFsinA=13×=5,又由等腰三角形的性質(zhì),求得答案.
解:(1)連接OD,
∵直線PD垂直平分⊙O的半徑OA于點B,⊙O的半徑為8,
∴OB=OA=4,BC=BD=CD,
∴在Rt△OBD中,BD=
∴CD=2BD=;
(2)∵PE是⊙O的切線,
∴∠PEO=90°,
∴∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,
∵OE=OA,
∴∠A=∠AEO,
∴∠PEF=∠PFE,
∴PE=PF=13;
(3)過點P作PG⊥EF于點G,
∴∠PGF=∠ABF=90°,
∵∠PFG=∠AFB,
∴∠FPG=∠A,
∴FG=PFsinA=13×=5
∵PE=PF,
∴EF=2FG=10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點 P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點.當點 P 沿半圓從點 A 運動至點 B 時,點 M 運動的路徑長是( )
A. 2 B. 2 C. π D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點A(1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式(用一般式表示);
(2)點D為y軸右側(cè)拋物線上一點,是否存在點D使S△ABC=S△ABD?若存在,請求出點D坐標;若不存在,請說明理由;
(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進行檢查,并且每個小區(qū)不重復檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC的中點,連接AE、DE,分別交BD、AC于點P、Q,過點P作PF⊥AE交CB的延長線于F,下列結(jié)論:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=AO,
④若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,
⑤CEEF=EQDE.
其中正確的結(jié)論有( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB邊上的一點,以AD為直徑的⊙O交BC于點E,交AC于點F,過點C作CG⊥AB交AB于點G,交AE于點H,過點E的弦EP交AB于點Q(EP不是直徑),點Q為弦EP的中點,連結(jié)BP,BP恰好為⊙O的切線.
(1)求證:BC是⊙O的切線.
(2)求證:=.
(3)若sin∠ABC═,AC=15,求四邊形CHQE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,直線交二次函數(shù)的圖像于點,,點在該二次函數(shù)的圖像上,設過點(其中)且平行于軸的直線交直線于點,交直線于點,以線段、為鄰邊作矩形.
(1)若點的橫坐標為8.
①用含的代數(shù)式表示的坐標;
②點能否落在該二次函數(shù)的圖像上?若能,求出的值;若不能,請說明理由;
(2)當時,若點恰好落在該二次函數(shù)的圖像上,請直接寫出此時滿足條件的所有直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L1:(常數(shù)t>0)與軸的負半軸交于點G,頂點為Q,過Q作QM⊥軸交軸于點M,交雙曲線L2:于點P,且OG·MP=4.
(1)求值;
(2)當t=2時,求PQ的長;
(3)當P是QM的中點時,求t的值;
(4)拋物線L1與拋物線L2所圍成的區(qū)域(不含標界)內(nèi)整點(點的橫、縱坐標都是整數(shù))的個數(shù)有且只有1個,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com