【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,當一個點到達終點時另一個點也停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設運動時間為t秒,則當t=______秒時,△PEC與△QFC全等.
【答案】1或或12.
【解析】
根據(jù)題意進行分類討論,根據(jù)全等三角形的性質(zhì)得出CP=CQ,代入得出關于t的方程,求出即可.
①如圖1,P在AC上,Q在BC上,
∵PE⊥l,QF⊥l,
∴∠PEC=∠QFC=90°,
∵∠ACB=90°,
∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,
∴∠EPC=∠QCF,
則△PCE≌△CQF,
∴PC=CQ,
即6-t=8-3t,
t=1;
②如圖2,P在BC上,Q在AC上,
∵由①知:PC=CQ,
∴t-6=3t-8,
t=1;
t-6<0,即此種情況不符合題意;
③當P、Q都在AC上時,如圖3,
CP=6-t=3t-8,
t=;
④當Q到A點停止,P在BC上時,AC=PC,t-6=6時,解得t=12.
∵P的速度是每秒1cm,Q的速度是每秒3cm,
P和Q都在BC上的情況不存在.
故答案為:1或或12.
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的方程2x2﹣5xsinA+2=0有兩個相等的實數(shù)根,其中∠A是銳角三角形ABC的一個內(nèi)角.
(1)求sinA的值;
(2)若關于y的方程y2﹣10y+k2﹣4k+29=0的兩個根恰好是△ABC的兩邊長,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把邊長為1的正方形ABCD繞頂點A逆時針旋轉(zhuǎn)30°到正方形AB′C′D′,則它們的公共部分的面積等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有五張正面分別標有數(shù)字﹣2,﹣1,0,1,2的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個不相等的實數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象不經(jīng)過點(1,0)的概率是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側(cè),點B的坐標為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?如存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD為AB邊上的高.點E從點B出發(fā)沿直線BC以2cm/s的速度移動,過點E作BC的垂線交直線CD于點F.
(1)試說明:∠A=∠BCD;
(2)當點E運動多長時間時,CF=AB.請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點,連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com