【題目】如圖,在□ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
【答案】(1)欲求△ABE∽△ECF ,由已知得到兩三角形兩個對應角相等,所以,兩三角行相似(2)FC=
【解析】
試題由題意根據平行四邊形的性質,可得到兩個三角形的對應角相等,∴△ABE∽△ECF,再由相似比,得到所求的值。(1)證明:如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC.
∴∠B=∠ECF,∠DAE=∠AEB.……2分
又∵∠DAE=∠F,
∴∠AEB=∠F.
∴△ABE∽△ECF. ........................................................ 3分
(2)解:∵△ABE∽△ECF,
∴. ............................................................ 4分
∵四邊形ABCD是平行四邊形,
∴BC=AD=8.
∴EC=BCBE=82="6."
∴.
∴. ……………………………………………5分
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運動,速度為2cm/s.當一個點到達終點時,另一個點隨之停止運動。設點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,有一塊直角三角板,其中,,,A、B在x軸上,點A的坐標為,圓M的半徑為,圓心M的坐標為,圓M以每秒1個單位長度的速度沿x軸向右做平移運動,運動時間為t秒;
求點C的坐標;
當點M在的內部且與直線BC相切時,求t的值;
如圖2,點E、F分別是BC、AC的中點,連接EM、FM,在運動過程中,是否存在某一時刻,使?若存在,直接寫出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①b2﹣4ac>0;②abc>0;③a+c>0;④9a+3b+c<0.其中,正確的結論有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動.
(1)經過幾秒,△CPQ的面積等于3cm2?
(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
(3)是否存在某一時刻,PQ長為,如果存在,求出運動時間t。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2-2ax-3a (a<0)經過點A(-1,0),將點B(0,4)向右平移5個單位長度,得到點C.
(1)求點C的坐標;
(2)求拋物線的對稱軸;
(3)若拋物線與線段BC恰有一個公共點,結合函數圖像,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com