【題目】先化簡,再求值: ,其中x=3tan30°+1.

【答案】解: ÷(

= ÷[ ]

= ÷

=

= ,

當x=3tan30°+1=3× +1= +1時,

原式= = =


【解析】將原式除式的第一項分子分母同時乘以x+3,然后利用同分母分式的減法法則計算,將被除式分母利用平方差公式分解因式,除式分母利用平方差公式分解因式,分子利用完全平方公式分解因式,再利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)將除法運算化為乘法運算,約分得到最簡結果,然后利用特殊角的三角函數(shù)值求出x的值,將x的值代入化簡后的式子中計算,即可求出原式的值.
【考點精析】根據(jù)題目的已知條件,利用特殊角的三角函數(shù)值的相關知識可以得到問題的答案,需要掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一種夾克和襯衣,夾克每件定價100元,襯衣每件定價50元,商場在開展促銷活動期間,向顧客提供兩種優(yōu)惠方案。

方案一:買一件夾克送一件襯衣

方案二:夾克和襯衣均按定價的80%付款

現(xiàn)有顧客要到該商場購買夾克30件,襯衣x件(x>30

1)若用方案一購買夾克需付款 元,襯衣需付款(用含x的式子表示) 元,共需付款 元。

若用方案二購買夾克需付款 元,襯衣需付款(用含x的式子表示) 元,共需付款 元。

2)通過計算說明,購買襯衣多少件時,兩種方案付款一樣多?

3)當x=40時,哪種方案更省錢?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.

如:

因此,4,12,20這三個數(shù)都是神秘數(shù).

(1)282012這兩個數(shù)是不是神秘數(shù)?為什么?

(2)設兩個連續(xù)偶數(shù)為(其中為非負整數(shù)),由這兩個連續(xù)偶數(shù)構造的神秘數(shù)是4的倍數(shù),請說明理由.

(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AM∥BN,BC∠ABN的平分線.

(1)過點AAD⊥BC,垂足為O,ADBN交于點D. (要求:用尺規(guī)作圖,并在圖中標明相應字母,保留作圖痕跡,不寫作法.)

(2)求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O,與斜邊AB交于點D、E為BC邊的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)填空:①若∠B=30°,AC=2 ,則DE=; ②當∠B=°時,以O,D,E,C為頂點的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB=10cmBC=8cm,點PA出發(fā),沿ABCD路線運動,到D停止,點P的速度為每秒1cm,a秒時點P改變速度,變?yōu)槊棵?/span>bcm,圖②是點P出發(fā)x秒后△APD的面積S(cm2)x()的關系圖象,

(1)參照圖②,求a、b及圖②中的c值;

(2)設點P離開點A的路程為y(cm),請寫出動點P改變速度后y與出發(fā)后的運動時間x()的關系式,并求出點P到達DC中點時x的值.

(3)當點P出發(fā)多少秒后,△APD的面積是矩形ABCD面積的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個體戶購進一批時令水果,20天銷售完畢,他將本次銷售情況進行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)繪制如下的函數(shù)圖象,其中日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關系如圖(1)所示,銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關系如圖(2)所示。(銷售額=銷售單價×銷售量)

(1)直接寫出y與x之間的函數(shù)解析式;

(2)分別求第10天和第15天的銷售額;

(3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中,“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ACBD,連結AB,直線ACBD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連結PA、PB,構成∠PAC、∠APB、∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°)

(1)當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;

(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關系(無需說明理由);

(3)當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關系,寫出你發(fā)現(xiàn)的一個結論并加以說明

查看答案和解析>>

同步練習冊答案