【題目】如圖,△ABC的面積為12cm2,以頂點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點(diǎn)M,N,再分別以點(diǎn)MN為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線AP,過點(diǎn)CCDAP于點(diǎn)D,連接DB,則△DAB的面積是_____cm2

【答案】6

【解析】

延長CDABE,依據(jù)△ACD≌△AED,即可得到CDED,進(jìn)而得到SBCDSBED,SACDSAED,據(jù)此可得SABDSAEDSBEDSABC

解:如圖所示,延長CDABE

由題可得,AP平分BAC

∴∠CADEAD,

CDAP

∴∠ADCADE90°,

ADAD,

∴△ACD≌△AEDASA),

CDED,

SBCDSBEDSACDSAED,

SABDSAED+SBEDSABC×126cm2),

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,EAB的中點(diǎn),FAD上一點(diǎn),且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實(shí)數(shù)),其中正確結(jié)論的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于點(diǎn)A(-3,0)、B(1,0),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D.

(1)b、c的值;

(2)∠DAO的度數(shù)和線段AD的長;

(3)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′,若新拋物線經(jīng)過點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC4,∠BAC100°,點(diǎn)D是底邊BC的動(dòng)點(diǎn)(點(diǎn)D不與BC重合),連接AD,作∠ADE40°,DEAC交于點(diǎn)E

1)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請(qǐng)說明理由;

2)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求出∠BDA的度數(shù);若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是二次函數(shù)的部分的對(duì)應(yīng)值:

x

-1

0

1

2

3

y

m

-1

-2

-1

2

(1)求函數(shù)解析式;

(2)當(dāng)時(shí),y的取值范圍是___________;

(3)當(dāng)拋物線的頂點(diǎn)在直線的下方時(shí),n的取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫出證明過程.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、都在方格紙的格點(diǎn)上,方格紙中每個(gè)小正方形的邊長都是1

1)畫關(guān)于直線對(duì)稱的;

2)在直線上找一點(diǎn),使最;(要求在直線上標(biāo)出點(diǎn)的位置)

3)連接,計(jì)算四邊形PABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案