【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(b,0),C(-1,2),且+(a+2b-4)2=0.
(1)求a,b的值.
(2)在y軸的正半軸上存在一點(diǎn)M,使S△COM=S△ABC,求出點(diǎn)M的坐標(biāo).
(3)在坐標(biāo)軸的其他位置是否有在點(diǎn)M,使S△COM=S△ABC仍成立?若存在,請直 接寫出符合條件的點(diǎn)M的坐標(biāo).
【答案】(1)a=2,b=3;(2)(0,5);(3)(0,-5)或(-2.5,0)或(2.5,0).
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)列出關(guān)于a、b的二元一次方程組,求解即可;
(2)根據(jù)三角形的面積公式列式求出OM的長,然后寫出點(diǎn)M的坐標(biāo)即可;
(3)寫出點(diǎn)M在y軸負(fù)半軸上時的坐標(biāo),再求出點(diǎn)M在x軸上,根據(jù)三角形的面積公式列式求出OM的長,然后寫出點(diǎn)M的坐標(biāo).
解:(1)由題意得,,
①×2得,4a+2b+2=0③,
③②得,3a=6,
解得a=2,
把a=2代入①得,4+b+1=0,
解得b=3;
(2)∵a=2,b=3,C(1,2),
∴AB=3(2)=5,點(diǎn)C到y軸的距離為1,
∴OM1=××5×2,
解得OM=5,
∵點(diǎn)M在y軸正半軸上,
∴M的坐標(biāo)為(0,5);
(3)存在.
點(diǎn)M在y軸負(fù)半軸上時,點(diǎn)M(0,-5),
點(diǎn)M在x軸上時,OM2=××5×2,
解得OM=2.5,
所以,點(diǎn)M的坐標(biāo)為(-2.5,0)或(2.5,0),
綜上所述,存在點(diǎn)M的坐標(biāo)為(0,-5)或(-2.5,0)或(2.5,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長都相等,三角形ABC的三個頂點(diǎn)都在格點(diǎn)(小正方形的頂點(diǎn))上.
(1)平移三角形ABC,使頂點(diǎn)A平移到點(diǎn)D的位置,得到三角形DEF,請?jiān)趫D中畫出三角形DEF;(注:點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E)
(2)若∠A=50°,則直線AC與直線DE相交所得銳角的度數(shù)為 °,依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E在AB上,點(diǎn)D在BC上,BD=BE,∠BAD=∠BCE,AD與CE相交于點(diǎn)F,試判斷△AFC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B.
(1)DE與BC平行嗎?為什么?
(2)若ED平分∠AEF,∠C=45°,試判定EF與AC有怎樣的位置關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,且BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動,速度為2cm/秒;同時直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動,速度為1cm/秒,運(yùn)動過程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動時間為t秒(0<t<5).
(1)當(dāng)t為何值時,四邊形PQCM是平行四邊形?
(2)設(shè)四邊形PQCM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動到點(diǎn)B時停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com