【題目】如圖,在RtABC中,∠ACB90°

1)利用尺規(guī)作圖,在BC邊上求作一點(diǎn)P,使得點(diǎn)P到邊AB的距離等于PC的長(zhǎng);(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

2)在(1)的條件下,以點(diǎn)P為圓心,PC長(zhǎng)為半徑的⊙P中,⊙P與邊BC相交于點(diǎn)D,若AC6,PC3,求BD的長(zhǎng).

【答案】1)如圖所示,見(jiàn)解析;(2BD的長(zhǎng)為2

【解析】

1)根據(jù)題意可知要作∠A的平分線,按尺規(guī)作圖的要求作角平分線即可;

2)由切線長(zhǎng)定理得出ACAE,設(shè)BDx,BEy,則BC6+x,BP3+x,通過(guò)△PEB∽△ACB可得出,從而建立一個(gè)關(guān)于x,y的方程,解方程即可得到BD的長(zhǎng)度.

1)如圖所示:

作∠A的平分線交BC于點(diǎn)P

點(diǎn)P即為所求作的點(diǎn).

2)作PEAB于點(diǎn)E,則PEPC3,

AB與圓相切,

∵∠ACB90°,

AC與圓相切,

ACAE

設(shè)BDx,BEy,

BC6+x,BP3+x

∵∠B=∠B,∠PEB=∠ACB,

∴△PEB∽△ACB

解得x2

答:BD的長(zhǎng)為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個(gè)實(shí)數(shù)根;

2如果為正整數(shù),且方程的兩個(gè)根均為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng)(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin67°≈0.92;cos67°≈0.381.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AD5,AB3.若M為射線AD上的一個(gè)動(dòng)點(diǎn),將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點(diǎn)所對(duì)應(yīng)的AM長(zhǎng)度的和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①是由五個(gè)完全相同的小正方體組成的立體圖形,將圖①中的一個(gè)小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )

A.主視圖B.俯視圖

C.左視圖D.主視圖、俯視圖和左視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4BC=6點(diǎn)D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點(diǎn)C落到點(diǎn)E處,聯(lián)結(jié)BE,那么BE的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=900,∠BAD=600,對(duì)角線AC平分∠BAD,且AB=AC=4,點(diǎn)E、F分別是AC、BC的中點(diǎn),連接DE,EF,DF,DF的長(zhǎng)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖二次函數(shù)的圖象與軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),點(diǎn)是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象經(jīng)過(guò)、

1)求二次函數(shù)的解析式;

2)寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;

3)若直線軸的交點(diǎn)為點(diǎn),連結(jié)、,求的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BCCD上,AE = AF

1)求證:BE = DF;

2)連接ACEF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案