【題目】如圖二次函數(shù)的圖象與軸交于點(diǎn)和兩點(diǎn),與軸交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象經(jīng)過、
(1)求二次函數(shù)的解析式;
(2)寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;
(3)若直線與軸的交點(diǎn)為點(diǎn),連結(jié)、,求的面積;
【答案】(1);(2)或;(3)4.
【解析】
(1)直接將已知點(diǎn)代入函數(shù)解析式求出即可;
(2)利用函數(shù)圖象結(jié)合交點(diǎn)坐標(biāo)得出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
(3)分別得出EO,AB的長(zhǎng),進(jìn)而得出面積.
(1)∵二次函數(shù)與軸的交點(diǎn)為和
∴設(shè)二次函數(shù)的解析式為:
∵在拋物線上,
∴3=a(0+3)(0-1),
解得a=-1,
所以解析式為:;
(2)=x22x+3,
∴二次函數(shù)的對(duì)稱軸為直線;
∵點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn);
∴;
∴使一次函數(shù)大于二次函數(shù)的的取值范圍為或;
(3)設(shè)直線BD:y=mx+n,
代入B(1,0),D(2,3)得,
解得:,
故直線BD的解析式為:y=x+1,
把x=0代入得,y=3,
所以E(0,1),
∴OE=1,
又∵AB=4,
∴S△ADE=×4×3×4×1=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】非洲豬瘟疫情發(fā)生以來,豬肉市場(chǎng)供應(yīng)階段性偏緊和豬價(jià)大幅波動(dòng)時(shí)有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級(jí),增強(qiáng)豬肉供應(yīng)保障能力,國(guó)務(wù)院辦公廳于2019年9月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見》,某生豬飼養(yǎng)場(chǎng)積極響應(yīng)國(guó)家號(hào)召,努力提高生產(chǎn)經(jīng)營(yíng)管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場(chǎng)2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)請(qǐng)直接寫出當(dāng)(x為整數(shù))和(x為整數(shù))時(shí),y與x的函數(shù)關(guān)系式;
(2)若該飼養(yǎng)場(chǎng)生豬利潤(rùn)P(萬元/噸)與月份x(,且x為整數(shù))滿足關(guān)系式:,請(qǐng)問:該飼養(yǎng)場(chǎng)哪個(gè)月的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用尺規(guī)作圖,在BC邊上求作一點(diǎn)P,使得點(diǎn)P到邊AB的距離等于PC的長(zhǎng);(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)
(2)在(1)的條件下,以點(diǎn)P為圓心,PC長(zhǎng)為半徑的⊙P中,⊙P與邊BC相交于點(diǎn)D,若AC=6,PC=3,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,、,將經(jīng)過旋轉(zhuǎn)、平移變化后得到如圖1所示的.
(1)求經(jīng)過、、三點(diǎn)的拋物線的解析式;
(2)連結(jié),點(diǎn)是位于線段上方的拋物線上一動(dòng)點(diǎn),若直線將的面積分成兩部分,求此時(shí)點(diǎn)的坐標(biāo);
(3)現(xiàn)將、分別向下、向左以的速度同時(shí)平移,求出在此運(yùn)動(dòng)過程中與重疊部分面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)不僅有美麗風(fēng)光,也有許多令人喜愛的土特產(chǎn),為實(shí)現(xiàn)脫貧奔小康,某村組織村民加工包裝土特產(chǎn)銷售給游客,以增加村民收入.已知某種士特產(chǎn)每袋成本10元.試銷階段每袋的銷售價(jià)x(元)與該士特產(chǎn)的日銷售量y(袋)之間的關(guān)系如表:
x(元) | 15 | 20 | 30 | … |
y(袋) | 25 | 20 | 10 | … |
若日銷售量y是銷售價(jià)x的一次函數(shù),試求:
(1)日銷售量y(袋)與銷售價(jià)x(元)的函數(shù)關(guān)系式;
(2)假設(shè)后續(xù)銷售情況與試銷階段效果相同,要使這種土特產(chǎn)每日銷售的利潤(rùn)最大,每袋的銷售價(jià)應(yīng)定為多少元?每日銷售的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點(diǎn)C.點(diǎn)F是圓O上異于B、C的動(dòng)點(diǎn),直線BF與l相交于點(diǎn)E,過點(diǎn)F作AF的垂線交直線BC與點(diǎn)D.
(1)如果BE=15,CE=9,求EF的長(zhǎng);
(2)證明:①△CDF∽△BAF;②CD=CE;
(3)探求動(dòng)點(diǎn)F在什么位置時(shí),相應(yīng)的點(diǎn)D位于線段BC的延長(zhǎng)線上,且使BC=CD,請(qǐng)說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(7,1)、B(8,2)、C(9,0).
(1)請(qǐng)?jiān)趫D中畫出△ABC的一個(gè)以點(diǎn)P (12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點(diǎn)一側(cè));
(2)請(qǐng)直接寫出點(diǎn)B′及點(diǎn)C′的坐標(biāo);
(3)求線段BC的對(duì)應(yīng)線段B′C′所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬元時(shí),年銷售量為600臺(tái);每臺(tái)售價(jià)為45萬元時(shí),年銷售量為550臺(tái).假定該設(shè)備的年銷售量y(單位:臺(tái))和銷售單價(jià)(單位:萬元)成一次函數(shù)關(guān)系.
(1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬元,如果該公司想獲得10000萬元的年利潤(rùn).則該設(shè)備的銷售單價(jià)應(yīng)是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com