(2009•哈爾濱)函數(shù)y=的自變量x的取值范圍是   
【答案】分析:函數(shù)是分式形式時(shí),分式的分母是不能為0的,所以x+2≠0,即可求得x的取值范圍.
解答:解:由題意可知:x+2≠0,
解得:x≠-2;
所以,函數(shù)y=的自變量x的取值范圍是x≠-2.
點(diǎn)評:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•哈爾濱)如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省昆明市安寧市青龍學(xué)校中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.4.4.反比例函數(shù)(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•哈爾濱)如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

同步練習(xí)冊答案