【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點(diǎn)C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長(zhǎng)為4,設(shè)⊙OAC相交于點(diǎn)E,則AE的長(zhǎng)為( 。

A.B.1C.1D.

【答案】B

【解析】

通過求解CE的長(zhǎng)度來求出AE的長(zhǎng),連接OC,并過點(diǎn)OOFCEF,求出等邊三角形的高即可得出⊙O的直徑,進(jìn)而得到半徑OC的長(zhǎng)度;根據(jù)切線和等邊三角形的性質(zhì)不難的得出∠OCF=30°,再在RtOFC中,利用特殊角的三角函數(shù)值求出FC的長(zhǎng),最后利用垂徑定理即可得出CE的長(zhǎng).

連接OC,并過點(diǎn)OOFCEF.

∵△ABC為等邊三角形,邊長(zhǎng)為4,

∴∠ACB=60°,ABC的高為2.

∵等邊三角形ABC的高與⊙O的直徑相等,

∴⊙O的半徑OC=.

∵⊙OBC相切于點(diǎn)C,

∴∠OCB=90°.

∵∠ACB=60°

∴∠OCF=30°.

∵在RtOFC中,∠OCF=30°OC=,

FC=

CE=2FC=3cm

AE=AC-CE=4-3=1cm

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx3A1,0),B(﹣30),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)Pm,n)是線段AD上的動(dòng)點(diǎn).

1)求直線AD及拋物線的解析式;

2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長(zhǎng)度lm的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?

3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,QD,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請(qǐng)你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?

(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?

(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請(qǐng)用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使ABAC,連接AC,過點(diǎn)DDEAC,垂足為 E

1)求證:DCBD;

2)求證:DE為⊙O的切線;

3)若AB12AD6,連接OD,求扇形BOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,弦AB8,點(diǎn)C在圓O(CA,B不重合),連接CA、CB,過點(diǎn)O分別作ODAC,OEBC,垂足分別是點(diǎn)D、E

(1)求線段DE的長(zhǎng);

(2)點(diǎn)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖,已知入口BC3.9米,門衛(wèi)室外墻上的O點(diǎn)處裝有一盞燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長(zhǎng)1.2米,(燈罩長(zhǎng)度忽略不計(jì)),∠AOM60°

1)求點(diǎn)M到地面的距離,

2)某搬家公司一輛總寬2.55米,總高3.5米的貨車能否從該入口安全通過?如果能安全通過,請(qǐng)直接寫出貨車離門衛(wèi)室外墻AB的最小距離(精確到0.01米);如果不能安全通過,請(qǐng)說明理由.(參考數(shù)據(jù):1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BEAC,AEOB

1)求證:四邊形AEBD是菱形;

2)如果OA=4OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B在半徑為3的⊙O上,以OA、AB為鄰邊作平行四邊形OCBA,作點(diǎn)B關(guān)于OA的對(duì)稱點(diǎn)D,連接CD,則CD的最大值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的一元二次方程 x2-2(a -1)x a2+ 2=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求實(shí)數(shù)a的取值范圍;

(2)-1可能是方程的一個(gè)根嗎?若是請(qǐng)求出它的另一個(gè)根,若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案