【題目】如圖,將矩形紙片)折疊,使點剛好落在線段上,且折痕分別與邊,相交于點,,設折疊后點,的對應點分別為點,.

1)判斷四邊形的形狀,并證明你的結論;

2)若,且四邊形的面積,求線段的長.

【答案】(1)四邊形為菱形,理由見解析;(2

【解析】

1)根據(jù)折疊的性質(zhì)可得EC=EG,GF=CF,,由GFEC,可得,進一步可得GE=GF,于是可得結論;

2)根據(jù)題意可先求得CE的長,過點EEKGF于點K,在RtGEK中,根據(jù)勾股定理可求得GK的長,于是FK可求,在RtEFK中,再利用勾股定理即可求得結果.

1)四邊形為菱形,理由如下:

證明:由折疊可得:,

又∵,

,

,

,

∴四邊形為菱形.

2)如圖,∵四邊形為菱形,且其面積為,∴,

,

過點EEKGF于點K,則EK=AB=4,

RtGEK中,由勾股定理得:,

,

RtEFK中,由勾股定理得:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:,的角平分線,邊上的高,過點,交直線于點

如圖1,,___ ____;

中的,__ ____;(表示)

如圖2,中的結論還成立嗎?若成立,說明理由;若不成立,請求出(表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C60 m的點D(D與樓底C在同一水平面上)出發(fā),沿斜面坡比為i=1的斜坡DB前進30 m到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結果用根號表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡比i=1,山坡坡面上點E處有一休息亭,測得假山坡腳C與樓房水平距離BC=25 m,與亭子距離CE=20 m.小麗從樓房頂測得點E的俯角為45°,求樓房AB的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為.名選手的得分如下:根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為分),現(xiàn)得知號選手的綜合成績?yōu)?/span>.

序號

筆試成績/

面試成績/

1)求筆試成績和面試成績各占的百分比:

2)求出其余兩名選手的綜合成績,并以綜合成績排序確定這三名選手的名次。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關系:

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

(2)設第x天生產(chǎn)的產(chǎn)品成本為P/件,P的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求Wx的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級(1)班全體學生2018年初中畢業(yè)體育學業(yè)考試成績統(tǒng)計表如下:

成績/

45

49

52

54

55

58

60

人數(shù)

2

5

6

6

8

7

6

根據(jù)上表中信息判斷,下列結論中錯誤的是( 。

A.該班一共有40名同學

B.該班學生這次考試成績的眾數(shù)是55

C.該班學生這次考試成績的中位數(shù)是55

D.該班學生這次考試成績的平均數(shù)是55

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校進行校園美化工程招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨完成省錢?還是由甲乙合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,過矩形的對角線交點作直線分別交于點,連接,若是等腰三角形,則____.

查看答案和解析>>

同步練習冊答案