【題目】已知ABC中∠BAC=150°,AB、AC的垂直平分線分別交BCEF.則∠EAF的度數(shù)為______;

【答案】120°.

【解析】

根據(jù)三角形的內(nèi)角和定理可得:∠B+∠C=30°,然后根據(jù)垂直平分線的性質(zhì)可得:EB=EA,FA=FC,再根據(jù)等邊對等角即可證出∠B=EAB,∠FAC=C,從而求出∠EAB+FAC,即可求出∠EAF.

解:∵∠BAC=150°,

∴∠B+∠C=180°-∠BAC=30°

AB、AC的垂直平分線分別交BCEF

EB=EA,FA=FC

∴∠B=EAB,∠FAC=C

∴∠EAB+FAC=B+∠C=30°

∴∠EAF=BAC-(∠EAB+FAC=120°

故答案為:120°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,DEAB,分別交BC、AC于點DE,點FBC的延長線上,且CFDE

1)求證:△CEF是等腰三角形;

2)連接AD,當ADBC,BC8,△CEF的周長為16時,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為快樂分式”.如:,則 快樂分式

(1)下列式子中,屬于快樂分式的是 (填序號);

,② ,③ ,④ .

2)將快樂分式化成一個整式與一個分子為常數(shù)的分式的和的形式為: = .

3)應用:先化簡 ,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ACD和△BCE中, ACBC,ADBE,CDCE,∠ACE55°,∠BCD155°,ADBE相交于點P,則∠BPD的度數(shù)為(  )

A.110°B.125°C.130°D.155°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某個圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).

(1)請連接圖案,它是一個什么漢字?

(2)作出這個圖案關于y軸的軸對稱圖形,并寫出新圖案相應各端點的坐標,你得到一個什么漢字?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點D為AB上一點且BD=8厘米,點P在線段BC上以2厘米/秒的速度由B點向C點運動,設運動時間為t,同時,點Q在線段CA上由C點向A點運動.

(1)用含t的式子表示PC的長為_______________;

(2)若點Q的運動速度與點p的運動速度相等,當t=2時,三角形BPD與三角形CQP是否全等,請說明理由;

(3)若點Q的運動速度與點P的運動速度不相等,請求出點Q的運動速度是多少時,能夠使三角形BPD與三角形CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明聽說“武黃城際列車”已經(jīng)開通,便設計了如下問題:如圖,以往從黃石A坐客車到武昌客運站B,現(xiàn)在可以在黃石A坐“武黃城際列車”到武漢青山站C,再從青山站C坐市內(nèi)公共汽車到武昌客運站B.設AB=80 km,BC=20 km,∠ABC=120°.請你幫助小明解決以下問題:

(1)求A,C之間的距離.(參考數(shù)據(jù)≈4.6)

(2)若客車的平均速度是60 km/h,市內(nèi)的公共汽車的平均速度為40 km/h,“武黃城際列車”的平均速度為180 km/h,為了在最短時間內(nèi)到達武昌客運站,小明應選擇哪種乘車方案?請說明理由.(不計候車時間)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1的小正方形構成的網(wǎng)格,每個小正方形的頂點叫做格點,的頂點在格點上,且,以為原點建立平面直角坐標系,平行于軸的直線經(jīng)過,請按要求解答下列問題.

1)畫出關于直線的對稱,并直接寫出點的對稱點的坐標;

2)求點的距離;

3)在軸右側的格點中找一點,使,并直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案