【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.

(1)已知點(diǎn)A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為   

(2)若點(diǎn)C(1,2),點(diǎn)D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達(dá)式;

(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m).若在O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.

【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1

【解析】分析:1)根據(jù)定義建立以AB為邊的坐標(biāo)菱形”,由勾股定理求邊長(zhǎng)AB=4,可得30度角,從而得最小內(nèi)角為60°;

2)先確定直線CD與直線y=5的夾角是45°,D45)或(﹣2,5),易得直線CD的表達(dá)式為y=x+1y=﹣x+3

3)分兩種情況

①先作直線y=x,再作圓的兩條切線,且平行于直線y=x,如圖3,根據(jù)等腰直角三角形的性質(zhì)分別求P'B=BD=1,PB=5,寫出對(duì)應(yīng)P的坐標(biāo);

②先作直線y=﹣x,再作圓的兩條切線且平行于直線y=﹣x,如圖4,同理可得結(jié)論.

詳解:(1∵點(diǎn)A20),B0,2),OA=2,OB=2.在RtAOB由勾股定理得AB==4,∴∠ABO=30°.

∵四邊形ABCD是菱形,∴∠ABC=2ABO=60°.

ABCD,∴∠DCB=180°﹣60°=120°,∴以AB為邊的坐標(biāo)菱形的最小內(nèi)角為60°.

故答案為:60°;

2)如圖2

∵以CD為邊的坐標(biāo)菱形為正方形∴直線CD與直線y=5的夾角是45°.

過(guò)點(diǎn)CCEDEE,D4,5)或(﹣2,5),∴直線CD的表達(dá)式為y=x+1y=﹣x+3;

3)分兩種情況

①先作直線y=x,再作圓的兩條切線且平行于直線y=x,如圖3

∵⊙O的半徑為,且△OQ'D是等腰直角三角形OD=OQ'=2,P'D=32=1

∵△P'DB是等腰直角三角形P'B=BD=1,P'(0,1),同理可得OA=2AB=3+2=5

∵△ABP是等腰直角三角形,PB=5,P05),∴當(dāng)1m5時(shí),QP為邊的坐標(biāo)菱形為正方形;

②先作直線y=﹣x,再作圓的兩條切線,且平行于直線y=﹣x,如圖4

∵⊙O的半徑為,且△OQ'D是等腰直角三角形,OD=OQ'=2,BD=32=1

∵△P'DB是等腰直角三角形,P'B=BD=1,P'(0,﹣1),同理可得OA=2,AB=3+2=5

∵△ABP是等腰直角三角形PB=5,P0,﹣5),∴當(dāng)﹣5m1時(shí),QP為邊的坐標(biāo)菱形為正方形

綜上所述m的取值范圍是1m5或﹣5m1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情無(wú)情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學(xué)生積極參加獻(xiàn)愛心活動(dòng),該班50名學(xué)生的捐款統(tǒng)計(jì)情況如下表:

金額/

5

10

20

50

100

人數(shù)

6

17

14

8

5

則他們捐款金額的眾數(shù)和中位數(shù)分別是( )

A.100,10B.1020C.17,10D.17,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+6x+cx軸于AB兩點(diǎn),交y軸于點(diǎn)C.直線yx5經(jīng)過(guò)點(diǎn)B,C

1)求拋物線的解析式;

2)若點(diǎn)N為拋物線上動(dòng)點(diǎn),當(dāng)∠NBA=∠OAC時(shí),求點(diǎn)N的坐標(biāo),

3)過(guò)點(diǎn)A的直線交直線BC于點(diǎn)M,當(dāng)AMBC時(shí),過(guò)拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,Q,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)把中國(guó)人的飯碗牢牢端在自己手中的號(hào)召,確保糧食安全,優(yōu)選品種,提高產(chǎn)量,某農(nóng)業(yè)科技小組對(duì)A、B兩個(gè)玉米品種進(jìn)行實(shí)驗(yàn)種植對(duì)比研究.去年A、B兩個(gè)品種各種植了10畝.收獲后A、B兩個(gè)品種的售價(jià)均為2.4/kg,且B品種的平均畝產(chǎn)量比A品種高100千克,AB兩個(gè)品種全部售出后總收入為21600元.

1)求A、B兩個(gè)品種去年平均畝產(chǎn)量分別是多少千克?

2)今年,科技小組優(yōu)化了玉米的種植方法,在保持去年種植面積不變的情況下,預(yù)計(jì)AB兩個(gè)品種平均畝產(chǎn)量將在去年的基礎(chǔ)上分別增加a%2a%.由于B品種深受市場(chǎng)歡迎,預(yù)計(jì)每千克售價(jià)將在去年的基礎(chǔ)上上漲a%,而A品種的售價(jià)保持不變,AB兩個(gè)品種全部售出后總收人將增加,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如下表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

380

940

餐椅

160

已知用600元購(gòu)進(jìn)的餐椅數(shù)量與用1300元購(gòu)進(jìn)的餐桌數(shù)量相同.

1)求表中a的值;

2)該商場(chǎng)計(jì)劃購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過(guò)200張.若將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售,請(qǐng)問(wèn)怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】、兩組卡片,卡片上除數(shù)字外完全相同,組有三張,分別標(biāo)有數(shù)字、組有二張,分別標(biāo)有數(shù)字.小明閉眼從組中隨機(jī)抽出一張,記錄其標(biāo)有的數(shù)字為,再?gòu)?/span>組中隨機(jī)抽出一張,記錄其標(biāo)有的數(shù)字為,這樣就確定點(diǎn)的一個(gè)坐標(biāo)為

1)用列表或畫樹狀圖的方法寫出點(diǎn)的所有可能坐標(biāo);

2)求點(diǎn)落在第一象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀理解)設(shè)點(diǎn)P在矩形ABCD內(nèi)部,當(dāng)點(diǎn)P到矩形的一條邊的兩個(gè)端點(diǎn)距離相等時(shí),稱點(diǎn)P為該邊的和諧點(diǎn).例如:如圖1,矩形ABCD中,若PAPD,則稱P為邊AD和諧點(diǎn)

(解題運(yùn)用)已知,點(diǎn)P在矩形ABCD內(nèi)部,且AB=10,BC=6

1)設(shè)P是邊AD和諧點(diǎn),則P BC和諧點(diǎn)(填不是);

2)若P是邊BC和諧點(diǎn),連接PA,PB,當(dāng)PAB是直角三角形時(shí),求PA的值;

3)如圖2,若P是邊AD和諧點(diǎn),連接PA,PB,PD,求tan∠PAB· tan∠PBA的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、610、……這樣的數(shù)稱為“三角形數(shù)”,而把14、16、……這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.按下列圖示中的規(guī)律,請(qǐng)寫出第9個(gè)等式_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x與反比例函數(shù)y=的圖象交于關(guān)于原點(diǎn)對(duì)稱的AB兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是3

1)求反比例函數(shù)的表達(dá)式;

2)將直線y=x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果ABC的面積為48,求平移后的直線的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案