【題目】(閱讀理解)設(shè)點(diǎn)P在矩形ABCD內(nèi)部,當(dāng)點(diǎn)P到矩形的一條邊的兩個(gè)端點(diǎn)距離相等時(shí),稱點(diǎn)P為該邊的“和諧點(diǎn)”.例如:如圖1,矩形ABCD中,若PA=PD,則稱P為邊AD的“和諧點(diǎn)”.
(解題運(yùn)用)已知,點(diǎn)P在矩形ABCD內(nèi)部,且AB=10,BC=6.
(1)設(shè)P是邊AD的“和諧點(diǎn)”,則P 邊BC的“和諧點(diǎn)”(填“是”或“不是”);
(2)若P是邊BC的“和諧點(diǎn)”,連接PA,PB,當(dāng)△PAB是直角三角形時(shí),求PA的值;
(3)如圖2,若P是邊AD的“和諧點(diǎn)”,連接PA,PB,PD,求tan∠PAB· tan∠PBA的最小值.
【答案】(1)是;(2)或;(3)
【解析】
(1)證明△PAB≌△PDC,即可得證;
(2)先得出P在AD和BC的垂直平分線上,過(guò)P作PE⊥AD于E,PF⊥AB于F,易證四邊形PEAF為矩形,可得PF=3,根據(jù)PF⊥AB,得出PF2=AF·(AB-AF),設(shè)AF=x,解得x1=1,x2=9,然后即可得出答案;
(3)作PF⊥AB于F,由(2)可知PF=3,可得tan∠PAB·tan∠PBA==,設(shè)AF=x,則BF=10-x,可得AF·BF=(10-x)·x,可求出AF·BF的最大值,即可推出的最小值.
(1)是;
連接PB,PC
∵P是邊AD的“和諧點(diǎn)”,
∴PA=PD,
∴∠PDA=∠PAD,
∵∠CDA=∠BAD=90°,
∴∠CDP=∠BAP,
∵AP=DP,AB=CD,
∴△PAB≌△PDC(SAS),
∴PB=PC;
(2)∵P是BC的和諧點(diǎn),
∴P也是AD的和諧點(diǎn),
∴PB=PC,PA=PD,
∴P在AD和BC的垂直平分線上,
過(guò)P作PE⊥AD于E,PF⊥AB于F,
易證四邊形PEAF為矩形,
∴PF=AE,
又∵PA=PD,PE⊥AD,
∴AE=AD=3,
∴PF=3,
又∵△ABP為直角三角形,且P在矩形內(nèi)部,
∴只能∠APB=90°,
又∵PF⊥AB,
∴PF2=AF·BF(射影定理),
∴PF2=AF·(AB-AF),
設(shè)AF=x,
∴x(10-x)=9,
x2-10x+9=0,
(x-1)(x-9)=0,
∴x1=1,x2=9,
當(dāng)AF=9時(shí) PA==,
AF=1時(shí) PA==,
∴AF的值為或;
(3)作PF⊥AB于F,由(2)可知PF=3,
∴tan∠PAB=,tan∠PBA=,
∴tan∠PAB·tan∠PBA==
設(shè)AF=x,則BF=10-x,
∴AF·BF=(10-x)·x=-x2+10x=-(x-5)2+25,
當(dāng)x=5時(shí),AF·BF有最大值25,
∴有最小值是,
∴tan∠PAB·tan∠PBA的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售,兩種商品,售出2件種商品和3件種商品所得利潤(rùn)為700元;售出3件種商品和5件種商品所得利潤(rùn)為1100元.
(1)求每件種商品和每件種商品售出后所得利潤(rùn)分別為多少元;
(2)由于需求量大,,兩種商品很快售完,商場(chǎng)決定再一次購(gòu)進(jìn),兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么此商場(chǎng)至少需購(gòu)進(jìn)多少件種商品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地相距240 km,甲貨車從A地以40km/h的速度勻速前往B地,到達(dá)B地后停止,在甲出發(fā)的同時(shí),乙貨車從B地沿同一公路勻速前往A地,到達(dá)A地后停止,兩車之間的路程y(km)與甲貨車出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系如圖中的折線所示.其中點(diǎn)C的坐標(biāo)是,點(diǎn)D的坐標(biāo)是,則點(diǎn)E的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點(diǎn)A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為 ;
(2)若點(diǎn)C(1,2),點(diǎn)D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達(dá)式;
(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m).若在⊙O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)(x0)的圖象恰好經(jīng)過(guò)點(diǎn)F,M.若直尺的寬CD=2,三角板的斜邊FG=,則k=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,且AC⊥BC,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn), ,連接DE.
(1)求證:四邊形ACED為矩形;
(2)連接OE,如果BD=10,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過(guò)點(diǎn)C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P在第二象限內(nèi),過(guò)點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長(zhǎng)?此時(shí)PE等于多少?
(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)若一次函數(shù)圖象與軸交于點(diǎn)C,點(diǎn)D為點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com