【題目】如圖,四邊形ABCD是⊙O的內(nèi)接矩形,將矩形ABCD沿著直線BC翻折,點(diǎn)A、點(diǎn)D的對(duì)應(yīng)點(diǎn)分別為A′、D′,如果直線A′D′與⊙O相切,那么的值為_____.
【答案】
【解析】
根據(jù)題意作圖,翻折找出AD=BC=A′D′,AB=CD=CD′=A′B,過(guò)O作OH⊥CD,連接OC,OG交BC于E,根據(jù)已知條件設(shè)出AB=CD=CD′=A′B=x,則OC=OG=x,再由勾股定理求出CE,即可求出BC,代入求比值即可.
設(shè)直線A′D′與⊙O相切于G,連接OC,OG交BC于E,
∵將矩形ABCD沿著直線BC翻折,
∴AD=BC=A′D′,AB=CD=CD′=A′B,
過(guò)O作OH⊥CD,
∴CH=CD,
∵直線A′D′與⊙O相切,
∴OG⊥A′D′,
∵BC∥A′D′,
∴OG⊥BC,
∴則四邊形OECH是矩形,CE=BE=BC,
∴CH=OE,
設(shè)AB=CD=CD′=A′B=x,
∴OE=x,
∴OC=OG=x,
∴CE==,
∴BC=2CE=,
∴,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連CF,以下結(jié)論:①△ABF≌△CBF;②點(diǎn)E到AB的距離是;③△ADF與△EBF的面積比為3:2,④△ABF的面積為,其中一定成立的有( 。﹤(gè).
A.2B.3C.1D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),與x軸正半軸交于點(diǎn)C,連接BC,P為線段AC上的動(dòng)點(diǎn),P與A,C不重合,作PQ∥BC交AB于點(diǎn)Q,A關(guān)于PQ的對(duì)稱點(diǎn)為D,連接PD,QD,BD.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)D在拋物線上時(shí),求點(diǎn)P的坐標(biāo).
(3)設(shè)點(diǎn)P的橫坐標(biāo)為x,△PDQ與△ABC的重疊部分的面積為S
①直接寫(xiě)出S與x的函數(shù)關(guān)系式;
②當(dāng)△BDQ為直角三角形時(shí),直接寫(xiě)出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明去超市采購(gòu)防疫物品,超市提供下表所示、兩種套餐,小明決定購(gòu)買50份套餐.超市為了促進(jìn)消費(fèi),給出兩種優(yōu)惠方式,方式一:現(xiàn)金支付總額每滿700元立減200元;方式二:現(xiàn)金支付總額每滿600元送300元現(xiàn)金券,現(xiàn)金券可等同現(xiàn)金使用,但是使用現(xiàn)金券的總額不能超過(guò)應(yīng)付總金額.
套餐類別 | 一次性防護(hù)口罩 | 免洗洗手液 | 套餐價(jià)格 |
2包 | 1瓶 | 71元 | |
1包 | 2瓶 | 67元 |
(1)求一次性防護(hù)口罩和免洗洗手液各自的單價(jià);
(2)小明覺(jué)得優(yōu)惠方式二比方式一的優(yōu)惠力度更大,他計(jì)劃分兩次購(gòu)買,第一次付現(xiàn)金購(gòu)買一部分套餐,獲得的現(xiàn)金券在購(gòu)買剩下的部分的時(shí)候全部用掉.請(qǐng)你通過(guò)計(jì)算說(shuō)明小明這樣做能否比優(yōu)惠方式一付款更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC中,∠B=45°,∠C=60°,BC=4,D、F分別為AB、AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)D分別作DF⊥AC于F,DG⊥BC于G,那么FG的最小值為()
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科幻小說(shuō)《流浪地球》的銷量急劇上升.為應(yīng)對(duì)這種變化,某網(wǎng)店分別花20000元和30000元先后兩次購(gòu)進(jìn)該小說(shuō),第二次的數(shù)量比第一次多500套,且兩次進(jìn)價(jià)相同.
(1)該科幻小說(shuō)第一次購(gòu)進(jìn)多少套?每套進(jìn)價(jià)多少元?
(2)根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250套;銷售單價(jià)每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書(shū)的利潤(rùn)不低于10元且不高于18元.
①直接寫(xiě)出網(wǎng)店銷售該科幻小說(shuō)每天的銷售量y(套)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店店主期盼最高日利潤(rùn)達(dá)到2500元,他的愿望能實(shí)現(xiàn)嗎?請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市快遞員的收入情況,現(xiàn)隨機(jī)抽取了甲、乙兩家快遞公司50天的送貨單,對(duì)兩個(gè)公司的快遞員人均每天的送貨單數(shù)進(jìn)行統(tǒng)計(jì),數(shù)據(jù)如下:
已知這兩家快遞公司的快遞員的日工資方案 為:甲公司規(guī)定底薪70元,每單抽成1 元;乙公司規(guī)定底薪90元,每日前40單無(wú)抽成,超過(guò)40單的部分每單抽成3元.
(1)現(xiàn)從這50天中隨機(jī)抽取1天,求這一天乙公司快遞員人均送貨單數(shù)超過(guò)40(不含40)單的概率;
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù),若將各公司快遞員的人均送貨單數(shù)視為該公司各快遞員的送貨單數(shù),
①估計(jì)甲快遞公可各快遞員的日均送貨單數(shù):
②小明擬到甲、乙兩家快遞公司中的一家應(yīng)聘快遞員的工作.如果僅從工資收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)積極響應(yīng)“陽(yáng)光體育工程”的號(hào)召,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從長(zhǎng)跑、籃球、鉛球、立定跳遠(yuǎn)中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練前后郗進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練前后籃球定時(shí)定點(diǎn)投測(cè)試成績(jī)整理作出如下統(tǒng)計(jì)圖表.
訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試進(jìn)球數(shù)統(tǒng)計(jì)表:
進(jìn)球數(shù)(個(gè)) | 8 | 7 | 6 | 5 | 4 | 3 |
人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
請(qǐng)你根據(jù)圖表中的信息回答下列問(wèn)題
(1)送擇長(zhǎng)跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是 ,該班共有同學(xué) 人;
(2)直接補(bǔ)全“訓(xùn)練前籃球定時(shí)定點(diǎn)投測(cè)試進(jìn)球數(shù)統(tǒng)計(jì)圖”;
(3)若全區(qū)共有該年級(jí)學(xué)生4000人,請(qǐng)估計(jì)參加訓(xùn)練后籃球定時(shí)定點(diǎn)投籃進(jìn)球數(shù)達(dá)到6個(gè)以上(包含6個(gè))多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com