【題目】如圖,EF是矩形ABCDBC上的兩點(diǎn),AF=DE

1)求證:BE=CF

2)若∠1=∠2=30°,AB=5,FC=2,求矩形ABCD的面積(結(jié)果保留根號(hào)).

【答案】1)見(jiàn)解析;(2

【解析】

1)首先證明RtABFRtDCE,從而可得到BF=CE,然后由等式的性質(zhì)進(jìn)行證明即可;
2)先依據(jù)含30°直角三角形的性質(zhì)求得AF的長(zhǎng),然后依據(jù)勾股定理求得BF的長(zhǎng),從而可求得BC的長(zhǎng),最后,依據(jù)矩形的面積公式求解即可.

解:(1)∵矩形ABCD中∠B=C=90°,AB=CD
又∵AF=DE
RtABFRtDCEHL),
BF=CE
BF-EF=CE-EF,即BE=CF
2)∵RtABF中,∠2=30°
AF=2AB=10
BF=,

BC=BF+FC=,

∴矩形ABCD的面積=ABBC=5=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC直角三角形,延長(zhǎng)ABD,使BD=BC,在BC上取BE=AB,連接DEABC順時(shí)針旋轉(zhuǎn)后能與EBD重合,那么:

1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)角是多少度?

2ACDE的關(guān)系怎樣?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1)求值:

2)用消元法解方程組時(shí),兩位同學(xué)的解法如下:

解法一:

由①-②,得.

解法二:

由②得,,③

把①代入③,得.

①反思:上述兩個(gè)解題過(guò)程中有無(wú)計(jì)算錯(cuò)誤?若有誤,請(qǐng)?jiān)阱e(cuò)誤處打“×”.

②請(qǐng)選擇一種你喜歡的方法,完成解答.

3)求不等式組的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市中學(xué)生舉行足球聯(lián)賽,共賽了17(即每隊(duì)均需參賽17場(chǎng)),記分辦法是勝-場(chǎng)得3分。平場(chǎng)得1分,負(fù)一場(chǎng)得0.

(1)在這次足球賽中,若小虎足球隊(duì)踢平場(chǎng)數(shù)與踢負(fù)場(chǎng)數(shù)相同,共積16分,求該隊(duì)勝了幾場(chǎng);

(2)在這次足球賽中,若小虎足球隊(duì)總積分仍為16分,且踢平場(chǎng)數(shù)是踢負(fù)場(chǎng)數(shù)的整數(shù)倍,試推算小虎足球隊(duì)踢負(fù)場(chǎng)數(shù)的情況有幾種,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列證明過(guò)程填空,請(qǐng)?jiān)诶ㄌ?hào)里面填寫(xiě)對(duì)應(yīng)的推理的理由.如圖,已知:直線AB、CD被直線BC所截;直線BCDE被直線CD所截,∠1+2 180°,且∠1=∠D,求證:BCDE

證明:∵∠1+2180°(已知)

又∵∠1=∠3

∴∠2+3180°(等量代換)

AB   

∴∠4=∠1

又∵∠1=∠D

∴∠D   (等量代換)

BCDE ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為2的菱形ABCD的對(duì)角線AC上一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是ABBC邊上的中點(diǎn),MP+NP的最小值是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)、點(diǎn)的坐標(biāo)分別為,,現(xiàn)將線段向上平移個(gè)單位, 得到對(duì)應(yīng)線段,連接、,若,動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位的速度沿作勻速 移動(dòng),點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿作勻速運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng),假設(shè)移動(dòng)時(shí)間為秒。在移動(dòng)過(guò)程 .全等,則此時(shí)的移動(dòng)時(shí)間的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程()

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中, 延長(zhǎng)至點(diǎn),連接,且于點(diǎn),的角平分線相交于點(diǎn).

1)求證:①;②;

2)若,求的度數(shù);

3)若,請(qǐng)你探究之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案