【題目】如圖,已知反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象相交于點A(1,4)和點B(n,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.

【答案】
(1)解:∵反比例函數(shù)y= 的圖象過點A(1,4),

∴4= ,即m=4,

∴反比例函數(shù)的解析式為:y=

∵反比例函數(shù)y= 的圖象過點B(n,﹣2),

∴﹣2= ,

解得:n=﹣2

∴B(﹣2,﹣2).

∵一次函數(shù)y=ax+b(k≠0)的圖象過點A(1,4)和點B(﹣2,﹣2),

,

解得

∴一次函數(shù)的解析式為:y=2x+2;


(2)解:由圖象可知:當x<﹣2或0<x<1時,一次函數(shù)的值小于反比例函數(shù)的值.
【解析】(1)把A的坐標代入反比例函數(shù)的解析式,求出m的值,從而確定反比例函數(shù)的解析式,把B的坐標代入反比例函數(shù)解析式求出B的坐標,把A、B的坐標代入一次函數(shù)的解析式,即可求出a,b的值,從而確定一次函數(shù)的解析式;(2)根據(jù)函數(shù)的圖象即可得出一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點B(4,2),BA⊥x軸于A.

(1)畫出將△OAB繞原點旋轉180°后所得的△OA1B1 , 并寫出點B1的坐標;
(2)將△OAB平移得到△O2A2B2 , 點A的對應點是A2(2,﹣4),點B的對應點B2在坐標系中畫出△O2A2B2;并寫出B2的坐標;
(3)△OA1B1與△O2A2B2成中心對稱嗎?若是,請直接寫出對稱中心點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四邊形ABFD的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.隨機拋擲一枚硬幣,反面一定朝上
B.數(shù)據(jù)3,3,5,5,8的眾數(shù)是8
C.某商場抽獎活動獲獎的概率為 ,說明毎買50張獎券中一定有一張中獎
D.想要了解廣安市民對“全面二孩”政策的看法,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元,求這兩次各購進這種襯衫多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點A,且點A的橫坐標為4.

(1)求點A的坐標及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點B、C,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

查看答案和解析>>

同步練習冊答案