【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

【答案】C

【解析】試題分析:選項A、圖象與x軸有兩個交點,方程ax2+bx+c=0有兩個不相等的實數(shù)根,b2﹣4ac0所以b24ac,故A選項正確;選項B、拋物線的開口向上,函數(shù)有最小值,因為拋物線的最小值為﹣6,所以ax2+bx+c≥﹣6,故B選項正確;選項C、拋物線的對稱軸為直線x=﹣3,因為﹣5離對稱軸的距離大于﹣2離對稱軸的距離,所以mn,故C選項錯誤;選項D、根據(jù)拋物線的對稱性可知,(﹣1,﹣4)關(guān)于對稱軸的對稱點為(﹣5,﹣4),所以關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5﹣1,故D選項正確.故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(

A.12
B.24
C.12
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列可以判斷是菱形的是(

A.一組對邊平行且相等的四邊形B.對角線相等的平行四邊形

C.對角線垂直的四邊形D.對角線互相垂直且平分的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.

(1)求證:CE=AD;
(2)當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:9n+2÷9n=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校規(guī)定:學(xué)生的數(shù)學(xué)學(xué)期綜合成績是由平時、期中和期末三項成績按3:3:4的比例計算所得.若某同學(xué)本學(xué)期數(shù)學(xué)的平時、期中和期末成績分別是90分,90分和85分,則他本學(xué)期數(shù)學(xué)學(xué)期綜合成績是分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】

如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB、AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB妙分線

【解決問題】

1)如圖2,若∠MPN= ,且射線PQ是∠MPN妙分線,則∠NPQ= ____ .(用含的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】

如圖2,若∠MPN=54°,且射線PQ繞點PPN位置開始,以每秒的速度順時針旋轉(zhuǎn),當(dāng)PQPN時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

2)當(dāng)t為何值時,射線PM是∠QPN妙分線

3)若射線PM同時繞點P以每秒的速度順時針旋轉(zhuǎn),并與PQ同時停止.請求出當(dāng)射線PQ 是∠MPN妙分線t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運動,EF分別是AC、BD的中點.

(1)若AC=4cm,則EF=_________cm.

(2)當(dāng)線段CD在線段AB上運動時,試判斷EF的長度是否發(fā)生變化?如果不變請求出EF的長度,如果變化,請說明理由.

(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知內(nèi)部轉(zhuǎn)動,OE、OF分別平分,則、有何關(guān)系,請直接寫出_______________________.

查看答案和解析>>

同步練習(xí)冊答案