【題目】如圖,AB為⊙O的直徑,AE為⊙O的切線,若tanABE= ,AE=3,求BD的長(zhǎng).

【答案】BD=

【解析】

AB為⊙O的直徑,得到∠ADB=90°,根據(jù)鄰補(bǔ)角的定義得到∠ADE=90°,根據(jù)切線的性質(zhì)得到∠EAB=90°,推出EAD∽△EBA,根據(jù)相似三角形的性質(zhì)得到,得到AE2=EDEB,根據(jù)三角函數(shù)的定義得到AB=6,由勾股定理得到BE=,即可得到結(jié)論.

AB為⊙O的直徑, ∴∠ADB=90°,∴∠ADE=90°,

AE為⊙O的切線,

∴∠EAB=90°,

∵∠E=E,

∴△EAD∽△EBA,

,

AE2=EDEB,

RtAEB中,AE=3,tanABE=,

,

AB=6,

BE=

32=ED3,

ED=,

BD=BE﹣ED=3=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中∠A=60°,BMAC于點(diǎn)M,CNAB于點(diǎn)N,PBC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校20名數(shù)學(xué)教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.

(1)填寫下面的頻率分布表:

分組

頻數(shù)

頻率

19.5~29.5

29.5~39.5

39.5~49.5

49.5~59.5

合計(jì)

(2)畫出數(shù)據(jù)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何體的三視圖相互關(guān)聯(lián).已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BCFG的長(zhǎng);

(2)若主視圖與左視圖兩矩形相似,求AB的長(zhǎng);

(3)在(2)的情況下,求直三棱柱的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,折疊矩形ABCD,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,若BC8,AB6,則線段CE的長(zhǎng)度是( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,ADCD于點(diǎn)D.EAB延長(zhǎng)線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OCAC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.

1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;

2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)求助沒有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明解方程=3出現(xiàn)了錯(cuò)誤,解答過程如下:

方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)

去括號(hào),得1-1+x=3(第二步)

移項(xiàng),合并同類項(xiàng),得x=3(第三步)

檢驗(yàn),當(dāng)x=3時(shí)x-2≠0(第四步)

所以x=3是原方程的解.(第五步)

(1)小明解答過程是從第____步開始出錯(cuò)的,原方程化為第一步的根據(jù)是_____

(2)請(qǐng)寫出此題正確的解答過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案