【題目】如圖,頂點(diǎn)坐標(biāo)為的拋物線經(jīng)過(guò)點(diǎn),與軸的交點(diǎn)在,之間(含端點(diǎn)),則下列結(jié)論:;;對(duì)于任意實(shí)數(shù),總成立;關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

利用拋物線開口方向得到a0,再由拋物線的對(duì)稱軸方程得到b=﹣2a,則3a+ba,于是可對(duì)進(jìn)行判斷;利用2c3c=﹣3a可對(duì)進(jìn)行判斷;利用二次函數(shù)的性質(zhì)可對(duì)進(jìn)行判斷;根據(jù)拋物線yax2+bx+c與直線yn1有兩個(gè)交點(diǎn)可對(duì)進(jìn)行判斷.

解:∵拋物線開口向下,

a0,

而拋物線的對(duì)稱軸為直線x=﹣1,即b=﹣2a,

3a+b3a2aa0,所以錯(cuò)誤;

2c3,

c=﹣3a,

2≤﹣3a3

∴﹣1a≤﹣,所以正確;

∵拋物線的頂點(diǎn)坐標(biāo)(1,n),

x1時(shí),二次函數(shù)值有最大值n,

a+b+cam2+bm+c,

a+bam2+bm,所以正確;

∵拋物線的頂點(diǎn)坐標(biāo)(1,n),

∴拋物線yax2+bx+c與直線yn1有兩個(gè)交點(diǎn),

∴關(guān)于x的方程ax2+bx+cn1有兩個(gè)不相等的實(shí)數(shù)根,所以正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車行去年A型車的銷售總額為6萬(wàn)元,今年每輛車的售價(jià)比去年減少400元.若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)求今年A型車每輛車的售價(jià).

(2)該車行計(jì)劃新進(jìn)一批A型車和B型車共45輛,已知A、B型車的進(jìn)貨價(jià)格分別是1100元,1400元,今年B型車的銷售價(jià)格是2000元,要求B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AC=BC=4,∠ACB=90°,D為邊AB上一動(dòng)點(diǎn)(不與A、B重合),⊙DBC切于E點(diǎn),E點(diǎn)關(guān)于CD的對(duì)稱點(diǎn)F在△ABC的一邊上,則BD=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=2,AB=4E、F分別是AB、CD邊上的動(dòng)點(diǎn),EFAC,則AF+CE的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)是函數(shù)上的一點(diǎn),若O為坐標(biāo)原點(diǎn)),則的面積為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,,的切線,直線延長(zhǎng)線于,

1)求證:的切線;

2)若,求陰影部分的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有甲、乙、丙三輛汽車經(jīng)過(guò)這個(gè)路口.

1)求甲、乙兩輛汽車向同一方向行駛的概率;

2)甲、乙、丙三輛汽車向同一方向行駛的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn)A,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)

(1)求反比例函數(shù)的表達(dá)式;

(2)直接寫出時(shí),x的取值范圍;

(3)x軸上是否存在點(diǎn)P,使△ABP為直角三角形,若存在請(qǐng)求出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解九年級(jí)的600名學(xué)生每天的自主學(xué)習(xí)情況,隨機(jī)抽查了九年級(jí)的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時(shí)間.根據(jù)調(diào)查結(jié)果,制作了兩副不完整的統(tǒng)計(jì)圖(圖12),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

1)本次調(diào)查的學(xué)生人數(shù)是 人;

2)圖2中角 度;

3)將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)估算該校九年級(jí)學(xué)生自主學(xué)習(xí)不少于1.5小時(shí)有多少人.

查看答案和解析>>

同步練習(xí)冊(cè)答案