【題目】如圖,在平面直角坐標系中,點A,B分別在x軸正半軸與y軸正半軸上,線段OA,OB(OA<OB)的長是方程x(x﹣4)+8(4﹣x)=0的兩個根,作線段AB的垂直平分線交y軸于點D,交AB于點C.
(1)求線段AB的長;
(2)求tan∠DAO的值;
(3)若把△ADC繞點A順時針旋轉α°(0<α<90),點D,C的對應點分別為D1,C1,得到△AD1C1,當AC1∥y軸時,分別求出點C1,點D1的坐標.
【答案】(1)、4;(2)、;(3)、C1(4,2),D1(4-,2)
【解析】試題分析:(1)先根據(jù)方程的解求得線段OA,OB的長,再根據(jù)勾股定理求得AB的長;(2)先根據(jù)線段垂直平分線的性質,得到AD=BD,再根據(jù)Rt△AOD中的勾股定理,求得OD的長,并計算tan∠DAO的值;(3)先根據(jù)旋轉的性質,求得AC1和C1D1的長,再根據(jù)OA=4,AC1∥y軸,求得點C1和點D1的坐標.
試題解析:(1)由方程x(x﹣4)+8(4﹣x)=0,解得
x1=4,x2=8,
即OA=4,OB=8,
∴由勾股定理可得AB=
(2)∵CD為AB的垂直平分線,
∴AD=BD
∵在Rt△AOD中,OD2+OA2=AD2
即OD2+42=(8﹣OD)2,
∴OD=3
∴
(3)由旋轉可得,AC1=AC=2,C1D1=CD==
又∵OA=4,AC1∥y軸
∴C1(4,2),D1(4-,2)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣2,0)和點B(4,0),與y軸交于點C(0,﹣4).
(1)求二次函數(shù)的解析式,并寫出拋物線的對稱軸,頂點坐標;
(2)設E時拋物線對稱軸上一點,當∠BEC=90°時,求點E的坐標;
(3)若P(m,n)是拋物線上一個動點(其中m>0,n<0),是否存在這樣的點P,使得△PBC的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系如圖所示.那么,從關閉進水管起________分鐘該容器內的水恰好放完.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.
(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結果精確到0.01小時).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),將兩塊直角三角板的直角頂點C疊放在一起.
(1)試判斷∠ACE與∠BCD的大小關系,并說明理由;
(2)若∠DCE=30°,求∠ACB的度數(shù);
(3)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由;
(4)若改變其中一個三角板的位置,如圖(2),則第(3)小題的結論還成立嗎?(不需說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知D為△ABC邊BC上的一個動點(不與B,C重合),過D作DE∥AC交AB于點E,作DF∥AB交AC于點F.
(1)證明:△BDE∽△DCF;
(2)若△ABC的面積為10,點G為線段AF上的任意一點,設FC:AC=n,△DEG的面積為S,求S關于n的關系式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于6.3×103與6300這兩個近似數(shù),下列說法中,正確的是( ).
A.它們的有效數(shù)字與精確位數(shù)都不相同
B.它們的有效數(shù)字與精確位數(shù)都相同
C.它們的精確位數(shù)不相同,有效數(shù)字相同
D.它們的有效數(shù)字不相同,精確位數(shù)相同
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某新型感冒病毒的直徑約為0.000 000 733米,將0.000 000 733用科學記數(shù)法表示為( )
A. 7.33×10-6B. 7.33×10-7C. 7.33×106D. 7.33×107
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com