【題目】如圖,拋物線y=x2+mx+4m與x軸交于點(diǎn)A(,0)和點(diǎn)B(,0),與y軸交于點(diǎn)C,,若對(duì)稱軸在y軸的右側(cè).
(1)求拋物線的解析式
(2)在拋物線的對(duì)稱軸上取一點(diǎn)M,使|MC-MB|的值最大;
(3)點(diǎn)Q是拋物線上任意一點(diǎn),過點(diǎn)Q作PQ⊥x軸交直線BC于點(diǎn)P,連接CQ,當(dāng)△CPQ是等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)y=-x-4;(2)M(1,-6);(3)P1 (),P2(2,-2),P3().
【解析】
(1)利用根與系數(shù)的關(guān)系即可求出m,結(jié)合對(duì)稱軸在y軸右側(cè)可得結(jié)果;
(2)根據(jù)點(diǎn)A和點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,過點(diǎn)AC作直線交對(duì)稱軸于點(diǎn)M,求出A,B,C的坐標(biāo),求出AC的表達(dá)式,得到點(diǎn)M的坐標(biāo)即可;
(3)分PC=PQ,QC=QP,CP=CQ分別討論,求出相應(yīng)x值即可.
解:(1)∵y=x2+mx+4m與x軸交于,0)和點(diǎn)B(,0),
∴是方程x2+mx+4m=0的兩個(gè)根,
,
,
∴(-2m)2-16m=20,
解得m1=5,m2=-1,
∵對(duì)稱軸在y軸的右側(cè),
∴m=-1,
∴y=-x-4;
(2)y=-x-4中,當(dāng)x=0時(shí),y=-4,
當(dāng)y=0時(shí)=-2,=4,
∴A(-2,0),B(4,0),C(0,-4),
過點(diǎn)AC作直線交對(duì)稱軸于點(diǎn)M,
設(shè)直線AC的解析式為y=kx+b,
將(-2,0),(0,-4)代入,
則,
解得,
得y=-2x-4,當(dāng)x=1時(shí),y=-6,
∴M(1,-6);
將(4,0),(0,-4)代入,
則,
解得,
得y=x-4,
∴∠OCB=∠OBC=45°,
設(shè)P的橫坐標(biāo)為x,作PH⊥y軸于H,
則PC=,
∴PQ=|(x-4)--x-4)|
(圖一) (圖二)
如圖一圖二,當(dāng)CQ=CP時(shí),(x-4)+-x-4)=-8,
x=0,不合題意,所以不存在;
(圖三) (圖四) (圖五)
如圖三,當(dāng)PC=PQ時(shí),=(x-4)- -x-4),
解得x=,
∴P()
如圖四,當(dāng)CQ=PQ時(shí),x=(x-4)- -x-4),
解得x=2,
∴P(2,-2);
如圖五,當(dāng)PC=PQ時(shí) ,
-x-4)-(x-4)=,
解得:x=,
∴P();
綜上:P1() ,P2(2,-2),P3().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC、BC是⊙O的弦,∠ACB的平分線交⊙O于D,連接AD、BD,已知AB=6,BC=2.
(1)求AD的長(zhǎng)度和四邊形ACBD的面積;
(2)證明:2AD2=AC2+BC2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()交直線:于點(diǎn),點(diǎn)兩點(diǎn),且過點(diǎn),連接,.
(1)求此拋物線的表達(dá)式與頂點(diǎn)坐標(biāo);
(2)點(diǎn)是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,試探究點(diǎn)在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn),使得以,,為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)若點(diǎn)在軸上,點(diǎn)在拋物線上,是否存在以點(diǎn),,,為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店第一次用1200元購(gòu)進(jìn)一批大櫻桃,很快售完;又用2500元購(gòu)進(jìn)第二批大櫻桃,所購(gòu)公斤數(shù)是第一批的2倍,但進(jìn)價(jià)比第一批每公斤多了5元.
(1)求第一批大櫻桃每公斤進(jìn)價(jià)多少元?
(2)若以每公斤150元的價(jià)格銷售第二批大櫻桃,售出后,為了盡快售完,決定打折促銷,要使第二批大櫻桃的銷售利潤(rùn)不少于320元,剩余的大櫻桃每公斤售價(jià)至少打幾折(利潤(rùn)=售價(jià)-進(jìn)價(jià))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取九年級(jí)部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題:
九年級(jí)接受調(diào)查的同學(xué)共有多少名,并補(bǔ)全條形統(tǒng)計(jì)圖;
九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)聽音樂減壓的學(xué)生有多少名;
若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,請(qǐng)用畫樹狀圖或列表的方法求同時(shí)選出的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,圖②分別是網(wǎng)上某種型號(hào)拉桿箱的實(shí)物圖與示意圖,根據(jù)商品介紹,獲得了如下信息:滑桿、箱長(zhǎng)、拉桿的長(zhǎng)度都相等,即,點(diǎn)、在線段上,點(diǎn)在上,支桿,,,.
請(qǐng)根據(jù)以上信息,解決下列問題;
(1)求的長(zhǎng)度(結(jié)果保留根號(hào));
(2)求拉桿端點(diǎn)到水平滑桿的距離(結(jié)果保留到).
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解員工安全生產(chǎn)知識(shí)掌握情況,隨機(jī)抽取了部分員工進(jìn)行安全生產(chǎn)知識(shí)測(cè)試,測(cè)試試卷滿分100分.測(cè)試成績(jī)按、、、四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.(說明:測(cè)試成績(jī)?nèi)≌麛?shù),級(jí):90分~100分;級(jí):75分-89分;級(jí):60分~74分;級(jí):60分以下)
請(qǐng)解答下列問題:
(1)該企業(yè)員工中參加本次安全生產(chǎn)知識(shí)測(cè)試共有人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該企業(yè)共有員工800人,試估計(jì)該企業(yè)員工中對(duì)安全生產(chǎn)知識(shí)的掌握能達(dá)到級(jí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,點(diǎn)D為弧ACB的中點(diǎn),過點(diǎn)D的切線與BC的延長(zhǎng)線交于點(diǎn)E.
(1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);
(2)求證:DE⊥BC;
(3)若OC=2CE=4,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了調(diào)查學(xué)生對(duì)衛(wèi)生健康知識(shí),特別是疫情防控下的衛(wèi)生常識(shí)的了解,現(xiàn)從九年級(jí)名學(xué)生中隨機(jī)抽取了部分學(xué)生參加測(cè)試,并根據(jù)測(cè)試成績(jī)繪制了如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖(尚不完整).
組別 | 成績(jī)/分 | 人數(shù) |
第組 | ||
第組 | ||
第組 | ||
第組 | ||
第組 |
請(qǐng)結(jié)合圖表信息完成下列各題.
(1)表中a的值為_____,b的值為______;在扇形統(tǒng)計(jì)圖中,第組所在扇形的圓心角度數(shù)為______°;
(2)若測(cè)試成績(jī)不低于分為優(yōu)秀,請(qǐng)你估計(jì)從該校九年級(jí)學(xué)生中隨機(jī)抽查一個(gè)學(xué)生,成績(jī)?yōu)閮?yōu)秀的概率.
(3)若測(cè)試成績(jī)?cè)?/span>分以上(含分)均為合格,其他為不合格,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生中成績(jī)不合格的有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com