【題目】如圖,Rt△ABC中,∠C=Rt∠,AB=2,∠B=30°,正六邊形DEFGHI完全落在Rt△ABC內(nèi),且DE在BC邊上,F在AC邊上,H在AB邊上,則正六邊形DEFGHI的邊長為_____,過I作A1C1∥AC,然后在△A1C1B內(nèi)用同樣的方法作第二個正六邊形,按照上面的步驟繼續(xù)下去,則第n個正六邊形的邊長為_____.
【答案】, ()n﹣1×()n.
【解析】
如圖,連接AG,延長HG交AC于J.則易知AJ=JF=CF,設(shè)EF=a,則EC=a,CF=a.構(gòu)建方程求出a,探究規(guī)律利用規(guī)律即可解決問題;
解:如圖,連接AG,延長HG交AC于J.則易知AJ=JF=CF,設(shè)EF=a,則EC=a,CF=a.
∴3CF=AC,
∴a=AC,
在Rt△ABC中,∵AB=2,∠B=30°,
∴AC=AB=1,
∴a=,
易知A1C1=a,
∴第二個正六邊形邊長為: ××=()1×()2,
同法可得第三個正六邊形的邊長為:=()2×()3,
∴第n個正六邊形的邊長為:()n﹣1×()n,
故答案為:,()n﹣1×()n;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點I是△ABC的內(nèi)心,AI的延長線交邊BC于點D,交△ABC的外接圓于點E.
(1)求證:IE=BE;
(2)若IE=4,AE=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請直接寫出AE與DF的數(shù)量關(guān)系______________;
②將△EBF繞點B逆時針旋轉(zhuǎn)到圖②所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點B逆時針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請在圖③中畫出草圖,并求出AE′與DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD,過點C作CE⊥DB,垂足為E,直徑AB與CE的延長線相交于F點.
(1)求證:CF是⊙O的切線;
(2)當(dāng)BD=,sinF=時,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(I)求∠1的大小.
(Ⅱ)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,“在初中數(shù)學(xué)教學(xué)候總使用計算器是否直接影響學(xué)生計算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
n名學(xué)生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計表中的m= ;
(3)估計該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交、兩點(點在點左側(cè)),直線與拋物線交于、兩點,其中點的橫坐標(biāo)為2.
(1)求、兩點的坐標(biāo)及直線的函數(shù)表達(dá)式;
(2)是線段上的一個動點,過點作軸的平行線交拋物線于點,求線段長度的最大值;
(3)點是拋物線上的動點,在軸上是否存在點,使、、、四個點為頂點的四邊形是平行四邊形?如果存在,寫出所有滿足條件的點坐標(biāo)(請直接寫出點的坐標(biāo),不要求寫過程);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com