【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為yx,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2;以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3;以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;按此做法進(jìn)行下去,其中的長(zhǎng)___________

【答案】

【解析】

連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可得的長(zhǎng)為圓的周長(zhǎng),再找出圓半徑的規(guī)律即可得出結(jié)果.

解:連接P1O1,P2O2,P3O3,P4O4,,如圖所示:
P1是⊙1上的點(diǎn),
P1O1=OO1,
∵直線l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1x軸,
同理,PnOn垂直于x軸,

的長(zhǎng)為圓的周長(zhǎng),

∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點(diǎn)O3,以此類推,
OOn=2n-1

=×2πOOn=π×2n-1=2n-2π,
n=2020時(shí),= 22020-2π=22018π,
故答案為:22018π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷商購(gòu)進(jìn)某種商品,當(dāng)購(gòu)進(jìn)量在20千克~50千克之間(20千克和50千克)時(shí),每千克進(jìn)價(jià)是5元;當(dāng)購(gòu)進(jìn)量超過(guò)50千克時(shí),每千克進(jìn)價(jià)是4元.此種商品的日銷售量y(千克)受銷售價(jià)x(/千克)的影響較大,該經(jīng)銷商試銷一周后獲得如下數(shù)據(jù):

x(/千克)

5

5.5

6

6.5

7

y(千克)

90

75

60

45

30

解答下列問題:

(1)求出y關(guān)于x的一次函數(shù)表達(dá)式:

(2)若每天購(gòu)進(jìn)的商品能夠全部銷售完,且當(dāng)日銷售價(jià)不變,日銷售利潤(rùn)為w元,那么銷售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種商品的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?此時(shí)購(gòu)進(jìn)量應(yīng)為多少千克?(注:當(dāng)日利潤(rùn)=(銷售價(jià)-進(jìn)貨價(jià)日銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是AB、CD的中點(diǎn),EGAF,FHCE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是(  )

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸的正半軸交于點(diǎn)

1)求點(diǎn)的坐標(biāo)和該拋物線的對(duì)稱軸.

2)點(diǎn)軸的正半軸上,軸交拋物線于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),設(shè),

①當(dāng)的中點(diǎn)時(shí),求的值;

②連結(jié),設(shè)的周長(zhǎng)之差為,求關(guān)于的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=45°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.

填空: 的值為 ;②∠DBE的度數(shù)為 .

(2)類比探究

如圖2,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=60°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說(shuō)明理由.

(3)拓展延伸

如面3,在(2)的條件下,將點(diǎn)D改為直線AB上一動(dòng)點(diǎn),其余條件不變,取線段DE的中點(diǎn)M,連接BM、CM,若AC=2,則當(dāng)△CBM是直角三角形時(shí),線段BE的長(zhǎng)是多少?請(qǐng)直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于Am6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)求的面積;

3)根據(jù)圖象直接寫出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)是,為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),交直線于點(diǎn),拋物線的對(duì)稱軸是直線

(1)求拋物線的函數(shù)表達(dá)式和直線的解析式;

(2)若點(diǎn)在第二象限內(nèi),且,求的面積;

(3)(2)的條件下,若為直線上一點(diǎn),是否存在點(diǎn),使為等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC是圓O的內(nèi)接三角形,過(guò)點(diǎn)OODAB與點(diǎn)D,連接OA,點(diǎn)EAC的中點(diǎn),延長(zhǎng)EOBC于點(diǎn)F

1)求證:CEF∽△ODA

2)若ABC是不是等腰三角形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案