精英家教網(wǎng)如圖,在⊙O中,AB為⊙O的直徑,AD為弦,過B點的切線與AD的延長線交于點C,若AD=DC.則sin∠ACO等于(  )
A、
10
10
B、
2
10
C、
5
5
D、
2
4
分析:連接BD,作OE⊥AD.在Rt△OEC中運用三角函數(shù)的定義求解.
解答:精英家教網(wǎng)
解:連接BD,作OE⊥AD.
AB是直徑,則BD⊥AC.
∵AD=CD,
∴△BCD≌△BDA,BC=AB.
BC是切線,點B是切點,
∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=
2
2
AO.
由勾股定理得,CO=
5
OB=
5
AO,所以sin∠ACO=
EO
CO
=
10
10
點評:本題利用了切線的性質,等腰直角三角形的判定和性質,勾股定理,正弦的概念求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點,AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點,且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內一點,且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點,且它關于AC的對稱點是D′,BD′=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D點是BC的中點,DE⊥AB于E點,DF⊥AC于F點,則圖中全等三角形共有
3
3
對.

查看答案和解析>>

同步練習冊答案