【題目】如圖在平面直角坐標(biāo)系中,二次函數(shù)與軸交于點(diǎn),點(diǎn)是拋物線上點(diǎn),點(diǎn)為射線上點(diǎn)(不含兩點(diǎn)),且軸于點(diǎn).
(1)求直線及拋物線解析式;
(2)如圖,過點(diǎn)作軸,且與拋物線交于兩點(diǎn)(位于左邊),若,點(diǎn)為直線上方的拋物線上點(diǎn),求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo);
【答案】(1), (2)
【解析】
(1)拋物線表達(dá)式中有兩個(gè)未知數(shù),所以只需代入兩個(gè)點(diǎn)的坐標(biāo)即可求出表達(dá)式,直線為正比例函數(shù),只需一個(gè)點(diǎn)即可求出表達(dá)式;
解:(1)設(shè)直線表達(dá)式為,
把代入表達(dá)式得:
,
直線表達(dá)式為:;
把點(diǎn),點(diǎn)代入二次函數(shù)中,得:
,
解得:,
二次函數(shù)表達(dá)式為:;
(2)根據(jù)題意:
設(shè),
把點(diǎn)C代入(1)中二次函數(shù)表達(dá)式得:
,
得到:,
,
,
聯(lián)立①②得:,
,如圖所示,
分別過點(diǎn)B,點(diǎn)Q,點(diǎn)C作,
則,
設(shè),代入上式整理得:
,
時(shí)面積最大,
此時(shí);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD,邊長(zhǎng)為4,E是邊BC上的一動(dòng)點(diǎn),連DE,取DE中點(diǎn)G,將GE繞E順時(shí)針旋轉(zhuǎn)90°到EF,連接CF,當(dāng)CE為_____時(shí),CF取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOC的頂點(diǎn)坐標(biāo)分別為A(2,2)、O(0,0)、C(,0),以原點(diǎn)O為位似中心.
(1)在第一象限內(nèi),相似比為,將△AOC縮小,不用畫圖,請(qǐng)直接寫出縮小后的△A1OC1的兩個(gè)頂點(diǎn)坐標(biāo):A1 ,C1 ;
(2)相似比為2,將△AOC放大在第一象限畫出放大后的△A2OC2,直接寫出兩個(gè)頂點(diǎn)的坐標(biāo):A2 ,C2 ;在第三象限畫出放大后的△A3OC3,直接寫出兩個(gè)頂點(diǎn)的坐標(biāo):A3 ,C3 。
(3)相似比為k,將△AOC放大,若△AOC邊上有任意一點(diǎn)P的坐標(biāo)為(x,y),則放大后的圖形上,點(diǎn)P的對(duì)應(yīng)點(diǎn)Q的坐標(biāo)為 .(用含k、x和y的式子表示).
(建議:先用鉛筆畫圖,確定無(wú)誤后用黑色水性筆畫在答題卡上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形OAB的圓心角為90°,點(diǎn)C、D是的三等分點(diǎn),半徑OC、OD分別與弦AB交于點(diǎn)E、F,下列說法錯(cuò)誤的是( )
A.AE=EF=FBB.AC=CD=DB
C.EC=FDD.∠DFB=75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元。根據(jù)市場(chǎng)需求,乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件利潤(rùn)減少2元,設(shè)每天安排人生產(chǎn)乙產(chǎn)品。
(1)根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(rùn)(元) |
甲 | — | — | 15 |
乙 | — |
(2)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等,已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(rùn)(元)的最大值及相應(yīng)的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某高速公路建設(shè)中需要確定隧道AB的長(zhǎng)度.已知在C處的飛機(jī)上,測(cè)量人員測(cè)得正前方A,B兩點(diǎn)處的俯角分別為60°和45°,AC的長(zhǎng)為1000m.求隧道AB的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn), 重合),滿足,且點(diǎn)、分別在邊、上.
()求證: .
()當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com