精英家教網 > 初中數學 > 題目詳情

【題目】某商販在批發(fā)市場以每包元的價格購進甲種茶葉40包,以每包元的價格購進乙種茶葉60.

1)該商販購進甲、乙兩種茶葉共需資金______元(用含,的式子表示);

2)若該商販將兩種茶葉都提價全部售出,共可獲利多少元(用含,的式子表示)?

3)若該商販將兩種茶葉都以每包元的價格全部出售,在這次買賣中該商販是盈利還是虧損,請說明理由.

【答案】1;(2元;(3)盈利元,理由見解析.

【解析】

1)根據總價=單價×數量,分別求出商販購進甲、乙兩種茶葉需要的資金,再相加即可求解;
2)用商販購進甲、乙兩種茶葉共需資金乘30%可求共可獲利多少元;
3)先求出實際銷售額,進一步得到實際利潤,從而求解.

解:(1)該商販購進甲、乙兩種茶葉共需資金元;

2)依題意共可獲利:,

即共可獲利元;

3)實際銷售額為:,

銷售利潤為:,

因為,即,

所以該商販在這次買賣中盈利.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】紅心食品店想網購一種花生包裝袋,在網上搜索了、兩家網店(如圖所示),已知這兩家網店的這種花生包裝袋質量相同,請看圖回答下列問題:

1)假若紅心食品店想購買個花生包裝袋,那么在、兩家網店分別需要花多少錢(用含有的式子表示)?(提示:如需付運費時,運費只需付一次,即6元)

2)紅心食品店打算一次購買200個花生包裝袋,選擇哪家網店更省錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題:

1)(﹣8+ 5﹣(﹣19

2

3

4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,B=30°,以A為圓心適當長為半徑畫弧,分別交AC、AB于點M、N,分別以點M、N為圓心,大于MN的長為半徑畫弧交于點P,作射線APBC于點D,再作射線DEAB于點E,則下列結論錯誤的是(  )

A. ADB=120° B. SADC:SABC=1:3

C. CD=2,則BD=4 D. DE垂直平分AB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,是函數的圖像上一點,y軸上一動點,四邊形ABPQ是正方形(點ABPQ按順時針方向排列)。

1)求a的值;

2)如圖②,當時,求點P的坐標;

3)若點P也在函數的圖像上,求b的值;

4)設正方形ABPQ的中心為M,點N是函數的圖像上一點,判斷以點PQMN為頂點的四邊形能否是正方形,如果能,請直接寫出b的值,如果不能,請說明理由。

圖① 圖② 備用圖

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】jiong)是近時期網絡流行語,像一個人臉郁悶的神情.如圖所示,一張邊長為20的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個字圖案(陰影部分).設剪去的小長方形長和寬分別為xy,剪去的兩個小直角三角形的兩直角邊長也分別為x、y

1)用含有x、y的代數式表示右圖中的面積;

2)當時,求此時的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【問題情景】利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.

例如:張老師給小聰提出這樣一個問題:

如圖1,在ABC中,AB=3,AD=6,問ABC的高ADCE的比是多少?

小聰的計算思路是:

根據題意得:SABC=BCAD=ABCE.

從而得2AD=CE,

請運用上述材料中所積累的經驗和方法解決下列問題:

(1)【類比探究】

如圖2,在ABCD中,點E、F分別在AD,CD上,且AF=CE,并相交于點O,連接BE、BF,

求證:BO平分角AOC.

(2)【探究延伸】

如圖3,已知直線mn,點A、C是直線m上兩點,點B、D是直線n上兩點,點P是線段CD中點,且∠APB=90°,兩平行線m、n間的距離為4.求證:PAPB=2AB.

(3)【遷移應用】

如圖4,EAB邊上一點,EDAD,CECB,垂足分別為D,C,DAB=B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點,連接DM、CN.求DEMCEN的周長之和.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將兩塊直角三角尺的頂點疊放在一起.

1)若∠DCE25°,求∠ACB的度數.

2)若∠ACB140°,求∠DCE的度數.

3)猜想∠ACB與∠DCE的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,點MA點出發(fā)在線段AB上作勻速運動(不與A、B重合),同時點NB點出發(fā)在線段BC上作勻速運動.

(1)如圖1,若MAB中點,且DMMN.請在圖中找出兩對相似三角形:

      _,      ,選擇其中一對加以證明;

(2)①如圖2,若AB=5,BC=3M的速度為1個單位長度/秒,點N的速度為個單位長度/秒,運動的時間為t秒.當t為何值時,DAMMBN相似?請說明理由;

②如果把點N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得DAMMBNDCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案