【題目】某商販在批發(fā)市場以每包元的價格購進甲種茶葉40包,以每包元的價格購進乙種茶葉60包.
(1)該商販購進甲、乙兩種茶葉共需資金______元(用含,的式子表示);
(2)若該商販將兩種茶葉都提價全部售出,共可獲利多少元(用含,的式子表示)?
(3)若該商販將兩種茶葉都以每包元的價格全部出售,在這次買賣中該商販是盈利還是虧損,請說明理由.
科目:初中數學 來源: 題型:
【題目】紅心食品店想網購一種花生包裝袋,在網上搜索了、兩家網店(如圖所示),已知這兩家網店的這種花生包裝袋質量相同,請看圖回答下列問題:
(1)假若紅心食品店想購買個花生包裝袋,那么在、兩家網店分別需要花多少錢(用含有的式子表示)?(提示:如需付運費時,運費只需付一次,即6元)
(2)紅心食品店打算一次購買200個花生包裝袋,選擇哪家網店更省錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以A為圓心適當長為半徑畫弧,分別交AC、AB于點M、N,分別以點M、N為圓心,大于MN的長為半徑畫弧交于點P,作射線AP交BC于點D,再作射線DE交AB于點E,則下列結論錯誤的是( )
A. ∠ADB=120° B. S△ADC:S△ABC=1:3
C. 若CD=2,則BD=4 D. DE垂直平分AB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,是函數的圖像上一點,是y軸上一動點,四邊形ABPQ是正方形(點A.B.P.Q按順時針方向排列)。
(1)求a的值;
(2)如圖②,當時,求點P的坐標;
(3)若點P也在函數的圖像上,求b的值;
(4)設正方形ABPQ的中心為M,點N是函數的圖像上一點,判斷以點P.Q.M.N為頂點的四邊形能否是正方形,如果能,請直接寫出b的值,如果不能,請說明理由。
圖① 圖② 備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“囧”(jiong)是近時期網絡流行語,像一個人臉郁悶的神情.如圖所示,一張邊長為20的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分).設剪去的小長方形長和寬分別為x、y,剪去的兩個小直角三角形的兩直角邊長也分別為x、y.
(1)用含有x、y的代數式表示右圖中“囧”的面積;
(2)當時,求此時“囧”的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題情景】利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.
例如:張老師給小聰提出這樣一個問題:
如圖1,在△ABC中,AB=3,AD=6,問△ABC的高AD與CE的比是多少?
小聰的計算思路是:
根據題意得:S△ABC=BCAD=ABCE.
從而得2AD=CE,∴
請運用上述材料中所積累的經驗和方法解決下列問題:
(1)【類比探究】
如圖2,在ABCD中,點E、F分別在AD,CD上,且AF=CE,并相交于點O,連接BE、BF,
求證:BO平分角AOC.
(2)【探究延伸】
如圖3,已知直線m∥n,點A、C是直線m上兩點,點B、D是直線n上兩點,點P是線段CD中點,且∠APB=90°,兩平行線m、n間的距離為4.求證:PAPB=2AB.
(3)【遷移應用】
如圖4,E為AB邊上一點,ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點,連接DM、CN.求△DEM與△CEN的周長之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將兩塊直角三角尺的頂點疊放在一起.
(1)若∠DCE=25°,求∠ACB的度數.
(2)若∠ACB=140°,求∠DCE的度數.
(3)猜想∠ACB與∠DCE的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,點M從A點出發(fā)在線段AB上作勻速運動(不與A、B重合),同時點N從B點出發(fā)在線段BC上作勻速運動.
(1)如圖1,若M為AB中點,且DM⊥MN.請在圖中找出兩對相似三角形:
① ∽ _,② ∽ ,選擇其中一對加以證明;
(2)①如圖2,若AB=5,BC=3點M的速度為1個單位長度/秒,點N的速度為個單位長度/秒,運動的時間為t秒.當t為何值時,△DAM與△MBN相似?請說明理由;
②如果把點N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得△DAM與△MBN和△DCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com