【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)A坐標(biāo)為,點(diǎn)B坐標(biāo)為,OA與x軸正半軸夾角的正切值為,直線(xiàn)AB交y軸于點(diǎn)C,過(guò)C作y軸的垂線(xiàn),交反比例函數(shù)圖象于點(diǎn)D,連接OD、BD.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)連接BD,求出BDC的周長(zhǎng).
【答案】(1)y=x-2, ;(2).
【解析】試題分析:(1)根據(jù)正切值,可得OE的長(zhǎng),可得A點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得反比例函數(shù)解析式,根據(jù)點(diǎn)的坐標(biāo)滿(mǎn)足函數(shù)解析式,可得B點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得一次函數(shù)解析式;
(2)根據(jù)坐標(biāo)系內(nèi)兩點(diǎn)間的距離公式分別求出CD、BD、BC的長(zhǎng),即可得出△BDC的周長(zhǎng).
試題解析:
解:(1)如圖:過(guò)A做AE⊥x軸于E,
∵tan∠AOE===,
∴OE=4,
∴A(4,2),
∵y=的圖象過(guò)A(4,2),
∴2=,
解得k=8,
∴反比例函數(shù)的解析式為 y=,
B(-2,n)在 y=的圖象上,
解得n=-4,
∴B(-2,-4),
一次函數(shù)y=kx+b過(guò)A、B點(diǎn),
∴,
解得,
一次函數(shù)解析式為y=x-2;
(2)當(dāng)x=0時(shí),y=-2,
∴C(0,-2),
當(dāng)y=-2時(shí),-2=,
x=-4,
∴D(-4,-2),
∴CD=4,BD==,
BC==,
∴△BDC的周長(zhǎng)=++4
=+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)完成下面的解答過(guò)程完.如圖,∠1=∠B,∠C=110°,求∠3的度數(shù).
解:∵∠1=∠B
∴AD∥( )(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)
∴∠C+∠2=180°,( )
∵∠C=110°.
∴∠2=( )°.
∴∠3=∠2=70°.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(0,10),點(diǎn)B(m,10)在第一象限,連接AB、OB.
(1)如圖1,若OB=12,求m的值.
(2)如圖2,當(dāng)m=10時(shí),過(guò)B作BC⊥x軸于C,E為AB邊上一點(diǎn),AE=,把△OAE沿直線(xiàn)OE翻折得到△OFE(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)F),連接BF、CF,求證:BF⊥CF.
(3)如圖3,將△AOB沿直線(xiàn)OB翻折得到△GOB(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)G),若點(diǎn)G到x軸的距離不大于8,直接寫(xiě)出m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列, ,0,1,2,3這6個(gè)數(shù)中任取一個(gè)數(shù)記作,放回去,再?gòu)倪@六個(gè)數(shù)中任意取一個(gè)數(shù)記作,則使得分式方程有整數(shù)解,且使得函數(shù)的圖象經(jīng)過(guò)第一三四象限的所有的值有( ).
A. 2個(gè) B. 4個(gè) C. 5個(gè) D. 8個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,連接BD,AB=2AD,點(diǎn)E在AB邊上,連接ED.
(1)若∠ADE=30°,DE=6,求△BDE的面積;
(2)延長(zhǎng)CB至點(diǎn)F使得BF=2AD,連接FE并延長(zhǎng)交AD于點(diǎn)M,過(guò)點(diǎn)A作AN⊥EM于點(diǎn)N,連接BN,求證:FN=AN+BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑OC=10cm,直線(xiàn)l⊥CO,垂足為H,交⊙O于A,B兩點(diǎn),AB=16cm,直線(xiàn)l平移多少厘米時(shí)能與⊙O相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC為等邊三角形,點(diǎn)D為AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)E為BC延長(zhǎng)線(xiàn)上一點(diǎn),且BD=DE.
(1)如圖1,若點(diǎn)D在邊AC上,猜想線(xiàn)段AD與CE之間的關(guān)系,并說(shuō)明理由;
圖1
(2)如圖2,若點(diǎn)D在AC的延長(zhǎng)線(xiàn)上,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由.
圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市教育局決定分別配發(fā)給一中8臺(tái)電腦,二中10臺(tái)電腦,但現(xiàn)在僅有12臺(tái),需
在商場(chǎng)購(gòu)買(mǎi)6臺(tái). 從市教育局運(yùn)一臺(tái)電腦到一中、二中的運(yùn)費(fèi)分別是30元和50元,從商場(chǎng)
運(yùn)一臺(tái)電腦到一中、二中的運(yùn)費(fèi)分別是40元和80元. 要求總運(yùn)費(fèi)不超過(guò)840元,問(wèn)有幾
種調(diào)運(yùn)方案?指出運(yùn)費(fèi)最低的方案。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com