【題目】已知關于x的方程m2x2+(4m﹣1)x+4=0的兩個實數(shù)根互為倒數(shù),那么m的值為( )
A.2
B.-2
C.±2
D.±
【答案】B
【解析】解:∵方程m2x2+(4m﹣1)x+4=0的兩個實數(shù)根互為倒數(shù),
∴=1,解得m=2或m=﹣2,
當m=2時,方程變形為4x2+7x+4=0,△=49﹣4×4×4<0,方程沒有實數(shù)解,
所以m的值為﹣2.
故選B.
【考點精析】通過靈活運用一元二次方程的定義和求根公式,掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某課外學習小組有5人,在一次數(shù)學測驗中的成績分別是120、130、135、120、125,下列說法不正確的是( )
A.眾數(shù)是120
B.方差是34
C.中位數(shù)是135
D.平均數(shù)是126
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市開展的“‘新華杯’中學雙語課外閱讀”活動中,某中學為了解八年級400名學生讀書情況,隨機調查了八年級50名學生讀書的冊數(shù).統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 2 | 10 | 15 | 17 | 6 |
(1)求這50個樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計該校八年級400名學生在本次活動中讀書多于2冊的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“做文明郴州人”演講比賽,聘請了10位評委為參賽選手打分,賽前,組委會擬定了四種記分方案:方案一:取所有評委所給的平均分;
方案二:在所有評委給的分中,去掉一個最高分,去掉一個最低分,取剩余得分的平均分;
方案三:取所有評委給分的中位數(shù);
方案四:取所有評委給分的眾數(shù).
為了探究四種記分方案的合理性,先讓一名表演選手(不參加正式比賽的)演講,讓10位評委給演講者評分,表演者得分如下表:
評委編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
打分 | 7.0 | 7.8 | 3.2 | 8.0 | 8.4 | 8.4 | 9.8 | 8.0 | 8.4 | 8.0 |
(1)請分別用上述四種方案計算表演者的得分;
(2)如果你是評委會成員,你會建議采用哪種可行的記分方案?你覺得哪幾種方案不合適?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班為了從甲、乙兩同學中選出班長,進行了一次演講答辯和民主測評,A、B、C、D、E五位老師作為評委,對“演講答辯”情況進行了評價,全班50位同學參與了民主測評,結果如下表:
表一 演講答辯得分
表二 民主測評得票
規(guī)則:①演講答辯得分按“去掉一個最高分和一個最低分后,再算出平均分”的方法確定;②民主測評得分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分;③演講答辯得分和民主測評得分按4:6確定權重,計算綜合得分,請你計算一下甲、乙的綜合得分,選出班長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年00:12:14,天貓雙十一總成交額超36200000000元,已超過2013年雙十一全天的成交額,其中36200000000用科學記數(shù)法表示為:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知頂點為(-3,-6)的拋物線經過點(-1,-4),則下列結論中錯誤的是( )
A. B.
C. 若點(-2,),(-5,) 在拋物線上,則 D. 關于的一元二次方程的兩根為-5和-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】韋達定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , 則x1+x2=﹣ , x1x2= , 閱讀下面應用韋達定理的過程:
若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , 求x12+x22的值.
解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韋達定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列問題:
(1)設一元二次方程2x2+3x﹣1=0的兩根分別為x1 , x2 , 不解方程,求x12+x22的值;
(2)若關于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=3x2的圖象先向下平移3個單位,再向左平移4個單位所得的解析式為( 。
A.y=3(x﹣3)2+4B.y=3(x+4)2﹣3
C.y=3(x﹣4)2+3D.y=3(x﹣4)2﹣3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com