【題目】如圖,在中點(diǎn)邊上的一點(diǎn), ,沿折疊得到相交于點(diǎn).

(1)的度數(shù);

(2)的度數(shù).

【答案】1;(2

【解析】

1)根據(jù)折疊的特點(diǎn)得出∠,再根據(jù)三角形一個(gè)外角等于它不相鄰兩個(gè)內(nèi)角之和,即可得出答案;
2)根據(jù)已知求出∠ADB的值,再根據(jù)折疊的特點(diǎn)得出∠ADE=ADB,最后根據(jù)∠EDF=EDA -ADF,即可得出答案.

1)∵沿折疊得到,
∴∠
∵∠B=50°,∠BAD=30°,
∴∠AFC=B+BAD+DAF;

2)∵∠B=50°,∠BAD=30°,
∴∠ADB=180°-50°-30°=100°
沿折疊得到,
∴∠EDA=BDA=100°
∴∠EDF=EDA -ADF =∠EDA –(B+BAD)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠以每千克200元的價(jià)格購(gòu)進(jìn)甲種原料360千克,用于生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)1A產(chǎn)品或1B產(chǎn)品所需甲、乙兩種原料的千克數(shù)如下表:

產(chǎn)品/原料

A

B

甲(千克)

9

4

乙(千克)

3

10

乙種原料的價(jià)格為每千克300元,A產(chǎn)品每件售價(jià)3000元,B產(chǎn)品每件售價(jià)4200元,現(xiàn)將甲種原料全部用完,設(shè)生產(chǎn)A產(chǎn)品x件,B產(chǎn)品m件,公司獲得的總利潤(rùn)為y元.

1)寫出mx的關(guān)系式;

2)求yx的關(guān)系式;

3)若使用乙種原料不超過510千克,生產(chǎn)A種產(chǎn)品多少件時(shí),公司獲利最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一種包裝盒的表面展開圖,將它圍起來可得到一個(gè)幾何體的模型.

(1)請(qǐng)說出這個(gè)幾何體模型的最確切的名稱是__ __;

(2)如圖是根據(jù) a,h的取值畫出的幾何體的主視圖和俯視圖(圖中的粗實(shí)線表示的正方形(中間一條虛線)和三角形),請(qǐng)?jiān)诰W(wǎng)格中畫出該幾何體的左視圖;

(3)(2)的條件下,已知h20 cm,求該幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點(diǎn)A恰好落在邊BC的中點(diǎn)E處,AE=BD,那么tanABD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 AB=AC,CD⊥ABDBE⊥ACE,BECD相交于點(diǎn)O

1)求證AD=AE

2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的兩條對(duì)角線分別長(zhǎng)68,點(diǎn)P是對(duì)角統(tǒng)AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),PM+PN的最小值是( )

A. 10 B. 8 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無論取什么實(shí)數(shù)時(shí),點(diǎn)P總在直線,且點(diǎn)也在直線,的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,AEBC邊上的中線,C=45°sinB=,AD=1

1)求BC的長(zhǎng);

2)求tanDAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點(diǎn),P,M分別是AC,AB上的動(dòng)點(diǎn),連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

同步練習(xí)冊(cè)答案