【題目】已知:,,,設(shè),,,……,
(1)計(jì)算___________,____________,____________
(2)寫出,,,四者之間的關(guān)系,并證明你的結(jié)論.
(3)根據(jù)(2)的結(jié)論,直接寫出的值是_____________
【答案】(1)5,4,13;(2),見解析;(3)38
【解析】
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,由(a+b+c)3=﹣2(a3+b3+c3)+6abc+3(a2+b2+c2),可求s3,由變形可求s4;
(2)sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc,將已知條件代入即可;
(3)利用所求關(guān)系式可得:s5=s4+2s3﹣s2=13+8﹣5=16,則s6=s5+2s4﹣s3=16+26﹣4=﹣38.
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,
(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc=a3+b3+c3+3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc.
∵a+b+c=1,abc=﹣1,
∴(a+b+c)3=a3+b3+c3+3a2(1-a)+3b2(1-b)+3c2(1-c)+6abc
∴(a+b+c)3=a3+b3+c3+3a2-3a3+3b2-3b3+3c21-3c3+6abc
∴(a+b+c)3=﹣2(a3+b3+c3)-6+3(a2+b2+c2),
∴s3=a3+b3+c3=4.
∵ab+bc+ac=-2,
∴,
∴,
∴,
∴.
∵,
∴,
∴
∴
∴s4=a4+b4+c4=13.
故答案為:5,4,13;
(2)關(guān)系為sn=sn﹣1﹣2sn﹣2﹣sn﹣3;理由:
sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc.
∵a+b+c=1,ab+bc+ca=﹣2,abc=﹣1,
∴sn=sn﹣1+2sn﹣2﹣sn﹣3;
(3)∵s5=s4+2s3﹣s2=13+8﹣5=16,
∴s6=s5+2s4﹣s3=16+26﹣4=﹣38,
∴a6+b6+c6的為38.
故答案為:38.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,表示一騎自行車者與一騎摩托車者沿相同路線由甲地到乙地行駛過程的圖象,兩地間的距離是100千米,請(qǐng)根據(jù)圖象回答或解決下面的問題.
(1)誰出發(fā)的較早?早多長(zhǎng)時(shí)間?誰到達(dá)乙地早?早到多長(zhǎng)時(shí)間?
(2)兩人在途中行駛的速度分別是多少?
(3)指出在什么時(shí)間段內(nèi)兩車均行駛在途中;在這段時(shí)間內(nèi),
①自行車行駛在摩托車前面;
②自行車與摩托車相遇;
③自行車行駛在摩托車后面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠CAB=2∠CBF.
(1)試判斷直線BF與⊙O的位置關(guān)系,并說明理由;
(2)若AB=6,BF=8,求tan∠CBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝共80套.已知做一套M型號(hào)的時(shí)裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號(hào)的時(shí)裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設(shè)生產(chǎn)M型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元.
(1)求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(2)當(dāng)M型號(hào)的時(shí)裝為多少套時(shí),能使該廠所獲利潤(rùn)最大?最大利潤(rùn)是多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC=2,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接BD,則圖中陰影部分的面積是( 。
A. 2﹣2B. 2C. ﹣1D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,∠BAC=60°,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D、E.
(1)如圖1,當(dāng)點(diǎn)D恰好落在邊AB上時(shí),試判斷DE與AC的位置關(guān)系,并說明理由.
(2)如圖2,當(dāng)點(diǎn)B、D、E三點(diǎn)恰好在一直線上時(shí),旋轉(zhuǎn)角α=__°,此時(shí)直線CE與AB的位置關(guān)系是__.
(3)在(2)的條件下,聯(lián)結(jié)AE,設(shè)△BDC的面積S1,△AEC的面積S2,則S1與S2的數(shù)量關(guān)系是_____.
(4)如圖3,當(dāng)點(diǎn)B、D、E三點(diǎn)不在一直線上時(shí),(3)中的S1與S2的數(shù)量關(guān)系仍然成立嗎?試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com