【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟環(huán)境影響,去年1至7月,原材料價格一路攀升,長沙市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,隨著經(jīng)濟環(huán)境的好轉(zhuǎn),原材料價格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個月利潤最大;并求出最大利潤.
【答案】(1)(1≤x≤7,且x為整數(shù));(2)該廠去年8月利潤最大,最大利潤為48.4萬元.
【解析】
(1)由表格中數(shù)據(jù)可猜測,y1是x的一次函數(shù).把表格(1)中任意兩組數(shù)據(jù)代入直線解析式可得y1的解析式.
(2)分情況探討得:1≤x≤7時,利潤=P1×(售價﹣各種成本);80≤x≤12時,利潤=P2×(售價﹣各種成本);并求得相應(yīng)的最大利潤即解.
解::(1)由表格中數(shù)據(jù)可猜測,y1是x的一次函數(shù).
設(shè)
則
解得:
∴,
經(jīng)檢驗其它各點都符合該解析式,
∴(1≤x≤7,且x為整數(shù)).
(2)設(shè)去年第x月的利潤為w萬元.
當(dāng)1≤x≤7,且x為整數(shù)時,
∴當(dāng)x=4時,w最大=45萬元;
當(dāng)8≤x≤12,且x為整數(shù)時,
∴當(dāng)x=8時,w最大=48.4萬元
∴該廠去年8月利潤最大,最大利潤為48.4萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A、B、C三點的坐標(biāo)分別為:A(1,4)、B(0,3)、C(3,0),若P為x軸上一點,且∠BPC=2∠ACB,則點P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在△ABC的外側(cè)分別以AB,AC為腰作了兩個等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點M,N,G,連接GM,GN.小明發(fā)現(xiàn)了:線段GM與GN的數(shù)量關(guān)系是__________;位置關(guān)系是__________.
(2)類比思考:
如圖②,小明在此基礎(chǔ)上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中AB>AC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請說明理由.
(3)深入研究:
如圖③,小明在(2)的基礎(chǔ)上,又作了進一步的探究.向△ABC的內(nèi)側(cè)分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷△GMN的形狀,并給與證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以下信息,解答下列問題.
(1)小華同學(xué)設(shè)乙型機器人每小時搬運xkg產(chǎn)品,可列方程為 .
小惠同學(xué)設(shè)甲型機器人搬運800kg所用時間為y小時,可列方程為 .
(2)請你按照(1)中小華同學(xué)的解題思路,寫出完整的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BE,DF.下列說法:
① 對于任意的點E,四邊形BEDF都是平行四邊形;
② 當(dāng)∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;
③ 當(dāng)AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;
④ 當(dāng)∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.
所有正確說法的序號是:_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:寬與長的比是(約為0.618)的矩形叫作黃金矩形.黃金矩形給我們以協(xié)調(diào)、勻稱的美感,世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計.下面,我們用寬為2的矩形紙片折疊黃金矩形(提示:).
第一步:在矩形紙片一端 ,利用圖1的方法折出一個正方形,然后把紙片展平;
第二步:如圖2,把這個正方形折成兩個相等的矩形,再把紙片展平;
圖1 圖2
第三步:折出內(nèi)側(cè)矩形的對角線,并把折到圖3中所示的處;
第四步:展平紙片,按照所得的點折出,使,則圖4中就會出現(xiàn)黃金矩形.
圖3 圖4
(1)在圖3中_________ (保留根號);
(2)如圖3,則四邊形的形狀是_________;
(3)在圖4中黃金矩形是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與軸交于點C,與軸的正半軸交于點K,過點作軸交拋物線于另一點B,點在軸的負(fù)半軸上,連結(jié)交軸于點A,若.
(1)用含的代數(shù)式表示的長;
(2)當(dāng)時,判斷點是否落在拋物線上,并說明理由;
(3)過點作軸交軸于點延長至,使得連結(jié)交軸于點連結(jié)AE交軸于點若的面積與的面積之比為則求出拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com