【題目】某市教育局為了了解線上教學(xué)對視力影響,對參加2020年中考的50000名初中畢業(yè)生回校后立即進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:
(1)在頻數(shù)分布表中,a的值為________,b的值為________,并將頻數(shù)分布直方圖補充完整.
(2)甲同學(xué)說“我的視力情況是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù)”,問甲同學(xué)的視力情況應(yīng)在什么范圍內(nèi)?
(3)若視力在4.9以上(含4.9)均屬正常,求視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比,并根據(jù)上述信息估計全市初中畢業(yè)生中視力正常的學(xué)生人數(shù).
【答案】(1) 60;0.05,條形統(tǒng)計圖見詳解;
(2)4.6≤x<4.9
(3)35%;17500
【解析】
(1)由頻數(shù)分布表利用4.0≤x<4.3的頻數(shù)÷頻率,就可求出抽查的學(xué)生人數(shù);再根據(jù)頻數(shù)=總數(shù)×頻率,列式計算可求出a的值,再利用頻率=頻數(shù)÷總數(shù)可求出b的值;然后補全頻數(shù)分布直方圖.
(2)利用中位數(shù)的定義可得到甲同學(xué)的視力情況的中位數(shù).
(3)由表中數(shù)據(jù)可得到視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比,再利用全市初中畢業(yè)生的總?cè)藬?shù)×視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比,列式計算可求解.
解:(1)抽取的學(xué)生人數(shù)為:20÷0.1=200,
a=200×0.3=60;b=10÷200=0.05,
故答案為:60,0.05.
補全頻數(shù)分布直方圖如下.
(2)解:一共有200個數(shù)據(jù),從小到大排列第100個數(shù)和第101個數(shù)都是4.6≤x<4.9,
∴由題意可知甲同學(xué)的視力情況應(yīng)在4.6≤x<4.9范圍內(nèi).
(3)解:∵視力在4.9以上(含4.9)均屬正常,
∴視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比為0.3+0.05=0.35=35%;
∴估計全市初中畢業(yè)生中視力正常的學(xué)生人數(shù)為50000×35%=17500人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復(fù)使用),然后計算結(jié)果.
(1)計算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學(xué),且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是BC邊上的一個動點,沿著AE翻折矩形,使點B落在點F處若AB=3,BC=AB,解答下列問題:
(1)在點E從點B運動到點C的過程中,求點F運動的路徑長;
(2)當(dāng)點E是BC的中點時,試判斷FC與AE的位置關(guān)系,并說明你的理由;
(3)當(dāng)點F在矩形ABCD內(nèi)部且DF=CD時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為拋物線的部分圖象,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),下列結(jié)論:
①4ac<b2
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中正確的結(jié)論是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,點,是第一象限角平分線上的兩點,點的縱坐標為1,且,在軸上取一點,連接,,,,使得四邊形的周長最小,這個最小周長的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)圖像,下列說法錯誤的是( )
A.其圖象位于第一象限和第三象限
B.其圖象上,在每一象限內(nèi),的值隨的值的增大而減小
C.其圖象關(guān)于原點中心對稱
D.為圖象上任意一點,軸于,軸于,則矩形的面積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com