【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x﹣1與拋物線y=﹣x2+bx+c交于A、B兩點(diǎn),其中A(m,0)、B(4,n),該拋物線與y軸交于點(diǎn)C,與x軸交于另一點(diǎn)D.
(1)求m、n的值及該拋物線的解析式;
(2)如圖2,若點(diǎn)P為線段AD上的一動(dòng)點(diǎn)(不與A、D重合),分別以AP、DP為斜邊,在直線AD的同側(cè)作等腰直角△APM和等腰直角△DPN,連接MN,試確定△MPN面積最大時(shí)P點(diǎn)的坐標(biāo);
(3)如圖3,連接BD、CD,在線段CD上是否存在點(diǎn)Q,使得以A、D、Q為頂點(diǎn)的三角形與△ABD相似,若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)m=1,n=3, y=﹣x2+6x﹣5;(2) 當(dāng)m=2,即AP=2時(shí),S△MPN最大,此時(shí)OP=3,即P(3,0);(3)存在,點(diǎn)Q的坐標(biāo)為(2,﹣3)或(),理由見解析
【解析】
(1)把A與B坐標(biāo)代入一次函數(shù)解析式求出m與n的值,確定出A與B坐標(biāo),代入二次函數(shù)解析式求出b與c的值即可;
(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN為直角,由兩直角邊乘積的一半表示出三角形MPN面積,利用二次函數(shù)性質(zhì)確定出三角形面積最大時(shí)P的坐標(biāo)即可;
(3)存在,分兩種情況,根據(jù)相似得比例,求出AQ的長(zhǎng),利用兩點(diǎn)間的距離公式求出Q坐標(biāo)即可.
解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,
∴A(1,0),B(4,3),
∵y=﹣x2+bx+c經(jīng)過點(diǎn)A與點(diǎn)B,
∴,
解得:,
則二次函數(shù)解析式為y=﹣x2+6x﹣5;
(2)如圖2,△APM與△DPN都為等腰直角三角形,
∴∠APM=∠DPN=45°,
∴∠MPN=90°,
∴△MPN為直角三角形,
令﹣x2+6x﹣5=0,得到x=1或x=5,
∴D(5,0),即DA=5﹣1=4,
設(shè)AP=m,則有DP=4﹣m,
∴PM=m,PN=(4﹣m),
∴S△MPN=PMPN=×m×(4﹣m)=﹣m2+m=﹣(m﹣2)2+1,
∴當(dāng)m=2,即AP=2時(shí),S△MPN最大,此時(shí)OP=3,即P(3,0);
(3)存在,
易得直線CD解析式為y=x﹣5,設(shè)Q(x,x﹣5),
由題意得:∠BAD=∠ADC=45°,
當(dāng)△ABD∽△/span>DAQ時(shí),,即,
解得:AQ=,
由兩點(diǎn)間的距離公式得:(x﹣1)2+(x﹣5)2=,
解得:x=或x=,此時(shí)Q(,﹣)或(,﹣)(舍去);
當(dāng)△ABD∽△DQA時(shí),=1,即AQ=,
∴(x﹣1)2+(x﹣5)2=10,
解得:x=2或x=4,此時(shí)Q(2,﹣3)或(4,﹣1)(舍去),
綜上,點(diǎn)Q的坐標(biāo)為(2,﹣3)或().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題,需鋪設(shè)一條長(zhǎng)4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,E為AB的中點(diǎn),G為BC延長(zhǎng)線上一點(diǎn),射線EO與∠ACG的角平分線交于點(diǎn)F,若AB=8,BC=6,則線段EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn),設(shè)PD的長(zhǎng)度為x,PE與PC的長(zhǎng)度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( )
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是2019年三月份某居民小區(qū)隨機(jī)抽取20戶居民的用水情況:
用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補(bǔ)充畫出這20戶家庭三月份用電量的條形統(tǒng)計(jì)圖;
(2)據(jù)上表中有關(guān)信息,計(jì)算或找出下表中的統(tǒng)計(jì)量,并將結(jié)果填入表中:
(3)為了倡導(dǎo)“節(jié)約用水,綠色環(huán)保”的意識(shí),臺(tái)州市自來水公司實(shí)行“梯級(jí)用水、分類計(jì)費(fèi)”,價(jià)格表如下:
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請(qǐng)估算該小區(qū)三月份有多少戶家庭在ⅠI級(jí)標(biāo)準(zhǔn)?并估算這些級(jí)用水戶的總水費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,這些卡片除數(shù)字外都相同.小蕓同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.如圖是她所畫的樹狀圖的一部分.
(1)由如圖分析,小蕓的游戲規(guī)則是:從袋子中隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),再隨機(jī)抽出一張卡片;
(2)幫小蕓完成樹狀圖;
(3)求小蕓兩次抽到的數(shù)字之和為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),其中AB=4,∠AOC=120°,P為⊙O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線段CQ的最大值為( 。
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)已知本路段對(duì)校車限速為45千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com