【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?
【答案】(1)7,7.5,4.2(2)乙
【解析】試題分析:(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;
(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點(diǎn)進(jìn)行分析.
試題解析:(1)甲的平均成績a==7(環(huán)),
∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,
∴乙射擊成績的中位數(shù)b==7.5(環(huán)),
其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2(環(huán));
(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;
綜合以上各因素,若選派一名學(xué)生參加比賽的話,可選擇乙參賽,因?yàn)橐耀@得高分的可能更大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC≌△DEF,A與D,B與E分別是對應(yīng)頂點(diǎn),∠A=52°,∠B=67°,BC=15cm,則∠F=________,FE=_________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家準(zhǔn)備春節(jié)前舉行80人的聚餐,需要去某餐館訂餐.據(jù)了解餐館有10人坐和8人坐兩種餐桌,要使所訂的每個餐桌剛好坐滿,則訂餐方案共有______種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)(a,m,c均為常數(shù)且ac)是“完美拋物線”:
(1)試判斷ac的符號;
(2)若c=-1,該二次函數(shù)圖像與y軸交于點(diǎn)C,且.
①求a的值;
②當(dāng)該二次函數(shù)圖像與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個交點(diǎn)時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年度,連云港港口的吞吐量比上一年度增加31 000 000噸,創(chuàng)年度增量的最高紀(jì)錄,其中數(shù)據(jù)“31 000 000”用科學(xué)記數(shù)法表示為( )
A.3.1×107
B.3.1×106
C.31×106
D.0.31×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作一個角等于已知角
已知:∠AOB,
求作:∠A′OB′,使:∠A′OB′=∠AOB
小易同學(xué)作法如下:
①作射線O′A′;
②以點(diǎn)O為圓心,以任意長為半徑作弧,交OA于C,交OB于D;
③以點(diǎn)O′為圓心,以OC長為半徑作弧,交O′A于C
④以點(diǎn)C′圓心,以CD為半徑作弧,交③中所畫弧于D′;
⑤經(jīng)過點(diǎn)D′作射線O′B′,∠A′O′B′就是所求的角.
老師說:“小易的作法正確”
請回答:小易的作圖依據(jù)是______________________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com