【題目】如圖,拋物線與x軸交于點(diǎn)A,B,若點(diǎn)B的坐標(biāo)為.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若是軸上一點(diǎn),,將點(diǎn)Q繞著點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)90得到點(diǎn)E.
①用含t的式子表示點(diǎn)的坐標(biāo);
②當(dāng)點(diǎn)E恰好在該拋物線上時(shí),求t的值.
【答案】(1) y=﹣x2﹣2x+3,頂點(diǎn)坐標(biāo)為(﹣1,4);(2) ①E的坐標(biāo)為(t,5+t);②t=﹣2
【解析】
(1)把點(diǎn)B的坐標(biāo)代入二次函數(shù)解析式,求出b,利用配方法求出拋物線的頂點(diǎn)坐標(biāo);
(2)①作EH⊥y軸于H,證明△EPH≌△PQO,關(guān)鍵全等三角形的性質(zhì)得到PH=OQ=5,EH=OP=t,得到點(diǎn)E的坐標(biāo);
②把點(diǎn)E的坐標(biāo)代入二次函數(shù)解析式,計(jì)算得到答案.
解:(1)∵拋物線y=﹣x2+bx+3與x軸交于點(diǎn)B,點(diǎn)B的坐標(biāo)為(1,0).
∴﹣12+b+3=0,
解得,b=﹣2,
拋物線的解析式為:y=﹣x2﹣2x+3,
y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4);
(2)①作EH⊥y軸于H,
由旋轉(zhuǎn)的性質(zhì)可知,PE=PQ,∠EPQ=90°,
∴∠EPH+∠HPQ=90°,
∵∠POQ=90°,
∴∠OPQ+∠OQP=90°,
∴∠EPH=∠PQO,
在△EPH和△PQO中,
,
∴△EPH≌△PQO(AAS),
∴PH=OQ=5,EH=OP=t,
∴OH=PH﹣OP=5+t,
則點(diǎn)E的坐標(biāo)為(t,5+t);
②當(dāng)點(diǎn)E恰好在該拋物線上時(shí),﹣t2﹣2t+3=5+t,
解得,t1=﹣2,t2=﹣1
∵t<﹣1,
∴t=﹣2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2,∠A=30°,點(diǎn)D是AB的中點(diǎn),P是AC邊上一動(dòng)點(diǎn),連接DP,將△DPA沿著DP折疊,A點(diǎn)落到F處,DF與AC交于點(diǎn)E,當(dāng)△DPF的一邊與BC平行時(shí),線段DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB于E,CD=AB,DA、BC延長線交于F.
(1)若AC=12,∠ABC=30°,求DE的長;
(2)若BC=2AC,求證:DA=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線ABy=kx﹣1分別交x軸、y軸于點(diǎn)A、B,直線CDy=x+2分別交x軸、y軸于點(diǎn)D、C,且直線AB、CD交于點(diǎn)E,E的橫坐標(biāo)為﹣6.
(1)如圖①,求直線AB的解析式;
(2)如圖②,點(diǎn)P為直線BA第一象限上一點(diǎn),過P作y軸的平行線交直線CD于G,交x軸于F,在線段PG取點(diǎn)N,在線段AF上取點(diǎn)Q,使GN=QF,在DG上取點(diǎn)M,連接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的條件下,點(diǎn)E關(guān)于x軸對稱點(diǎn)為T,連接MP、TQ,若MP∥TQ,且GN:NP=4:3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸,y軸分別交于點(diǎn)A,B,Q為內(nèi)部一點(diǎn),則的最小值等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年1月3日,嫦娥四號探測器自主著落在月球背面,實(shí)現(xiàn)人類探測器首次月背軟著陸.當(dāng)時(shí),中國已提前發(fā)射的“鵲橋”中繼星正在地球、月球延長線上的L2點(diǎn)(第二拉格朗日點(diǎn))附近,沿L2點(diǎn)的動(dòng)態(tài)平衡軌道飛行,為嫦娥四號著陸器和月球車提供地球、月球中繼通信支持,保障嫦娥四號任務(wù)的完成與實(shí)施.如圖,已知月球到地球的平均距離約為38萬公里,L2點(diǎn)到月球的平均距離約為6.5萬公里.某刻,測得線段CL2與AL2垂直,∠CBL2=56°,則下列計(jì)算鵲橋中繼星到地球的距離AC方法正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的頂點(diǎn)M是直線和直線y=x+m的交點(diǎn).
(1)若直線y=x+m過點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;
(2)試證明無論m取任何值,二次函數(shù)的圖象與直線y=x+m總有兩個(gè)不同的交點(diǎn);
(3)在(1)的條件下,若二次函數(shù)的圖象與y軸交于點(diǎn)C,與x的右交點(diǎn)為A,試在直線上求異于M的點(diǎn)P,使P在△CMA的外接圓上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考將近,同學(xué)們需要花更多的時(shí)間來進(jìn)行自我反思和總結(jié),消化白天的學(xué)習(xí)內(nèi)容,提高學(xué)習(xí)效率.因此,每個(gè)班都在積極地進(jìn)行自我調(diào)整.我校班和班的同學(xué)也積極響應(yīng)號召,調(diào)查了本班的自習(xí)情況以供老師參考.
班同學(xué)在班級抽樣調(diào)查中,調(diào)查了十名同學(xué)的學(xué)習(xí)情況,將這十名同學(xué)在一周內(nèi)每天用于自主復(fù)習(xí)的總時(shí)間四舍五入后,分別記錄如下:(單位:分)
班的同學(xué)采取的普查方式,讓每位同學(xué)自己寫出平均每天的自主復(fù)習(xí)時(shí)間,將數(shù)據(jù)收集整理后得到以下數(shù)據(jù).
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 | 方差 |
班的同學(xué)還將自主復(fù)習(xí)時(shí)間分為四大類:第一類為時(shí)間小于分鐘以下,第二類為時(shí)間大于或等于分鐘且小于分鐘,第三類為時(shí)間大于或等于分鐘且小于分鐘,第四類為時(shí)間大于或等于分鐘,并得到如下的扇形圖.
(1)在扇形圖中,第一類所對的圓心角度數(shù) .
(2)寫出班被調(diào)查同學(xué)的以下特征數(shù).
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 | 方差 |
(3)從上面的數(shù)據(jù),我們可以得到 班的自主復(fù)習(xí)情況要好一些,其理由為(至少兩條):
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com