【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊O在x軸上,OC在y軸上,OA=6,OC=4,PC=BC.將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時(shí)針方向旋轉(zhuǎn),則第2019秒時(shí),點(diǎn)P的坐標(biāo)為( )
A.(3,)B.(2,﹣1)
C.(,﹣3)D.(﹣1,2)
【答案】C
【解析】
將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時(shí)針方向旋轉(zhuǎn),360°÷45°=8,8秒循環(huán)一次,因?yàn)?/span>2019÷8=252余數(shù)為3,推出第2019秒時(shí),點(diǎn)P旋轉(zhuǎn)到如圖P′處,作C′E⊥OC于E,P′F⊥C′E,利用等腰直角三角形的性質(zhì)即可解決問題.
∵將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時(shí)針方向旋轉(zhuǎn),360°÷45°=8,
∴8秒循環(huán)一次,
∵2019÷8=252余數(shù)為3,
∴第2019秒時(shí),點(diǎn)P旋轉(zhuǎn)到如圖P′處,作C′E⊥OC于E,P′F⊥C′E,
由題意△P′C′F,△OEC′都是等腰直角三角形,
∴OE=C′E=×4=2,P′F=C′F=×2=,
∴P′(,﹣3),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有七張正面標(biāo)有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗均后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有兩個(gè)不相等的實(shí)數(shù)根,且分式方程的解為正數(shù)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明發(fā)現(xiàn)相機(jī)快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個(gè)形狀大小都相同的四邊形圍成一個(gè)圓的內(nèi)接六邊形和一個(gè)小正六邊形,若PQ所在的直線經(jīng)過點(diǎn)M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD與正方形DEFG按如圖1放置,點(diǎn)A,D,G在同一條直線上,點(diǎn)E在CD邊上,AD=3,DE=,連接AE,CG
(1)線段AE與CC的關(guān)系為______;
(2)將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一個(gè)銳角后,如圖2,請(qǐng)問(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由
(3)在正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng)∠AEC=90°時(shí),請(qǐng)直接寫出AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點(diǎn)A作⊙O的切線并在其上取一點(diǎn)C,連接OC交⊙O于點(diǎn)D,BD的延長(zhǎng)線交AC于E,連接AD,
(1)求證:CD2=CEAC;
(2)若AB=4,AC=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.(,0)B.(2,0)C.(,0)D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對(duì)角線AC、BD交于點(diǎn)P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com