【題目】如圖1,長(zhǎng)度為6千米的國(guó)道兩側(cè)有,兩個(gè)城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點(diǎn)為和,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟(jì),方便兩個(gè)城鎮(zhèn)的物資輸送,現(xiàn)需要在國(guó)道上修建一個(gè)物流基地,設(shè)、之間的距離為千米,物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和為干米,以下是對(duì)函數(shù)隨自變量的變化規(guī)律進(jìn)行的探究,請(qǐng)補(bǔ)充完整.
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到與的幾組值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如圖2,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:
①若要使物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)
答:__________.
②如右圖,有四個(gè)城鎮(zhèn)、、、分別位于國(guó)道兩側(cè),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國(guó)道上修建一個(gè)物流基地,使得沿公路到、、、的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)
答:__________.
【答案】(1)6.5,8.5;(2)見(jiàn)解析;(3)①之間,②點(diǎn)處
【解析】
(1)由題意分x=2以及x=4兩種情況分析討論,并將相關(guān)線段的長(zhǎng)代入即可得答案;
(2)根據(jù)表格數(shù)據(jù)先描點(diǎn)再連接畫出函數(shù)圖象即可;
(3)①由圖形可知,若物流基地修建在C、D兩點(diǎn)之外,則距離會(huì)大于NC+CD+DM,從而可得答案;
②結(jié)合①的結(jié)論及修建在上時(shí),到、兩個(gè)城鎮(zhèn)的距離之和最小綜合分析可得答案.
解:(1)當(dāng)時(shí),點(diǎn)在點(diǎn)處,
此時(shí);
當(dāng)時(shí),點(diǎn)在點(diǎn)靠近側(cè)1處,
此時(shí).
(2)描點(diǎn),畫圖如下:
(3)①由函數(shù)圖象可得,當(dāng)物流基地在之間時(shí),沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小.
②當(dāng)修建在上時(shí),到、兩個(gè)城鎮(zhèn)的距離之和最;
當(dāng)修建在上時(shí),到、兩個(gè)城鎮(zhèn)的距離之和最;
綜上,修建在點(diǎn)處,則到、、、的距離之和最。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,∠CBD=30°,則圖中陰影部分的面積;
(3)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E若BC=12,tan∠CDA=,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有3個(gè)分別寫有數(shù)字﹣2,0,1的小球,它們除了數(shù)字不同以外其余完全相同,先從盒子里隨機(jī)抽取1個(gè)小球,再?gòu)氖O碌男∏蛑谐槿?/span>1個(gè),將這兩個(gè)小球上的數(shù)字依次記為a,b,則滿足關(guān)于x的方程x2+ax+b=0有實(shí)數(shù)根的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為 ;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹(shù)狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時(shí)間的變化而發(fā)生較大變化,其體溫()與時(shí)間(小時(shí))之間的關(guān)系如圖1所示.
小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時(shí)刻的體溫與0時(shí)體溫的絕對(duì)差(即差的絕對(duì)值)
B.駱駝從0時(shí)到時(shí)刻之間的最高體溫與當(dāng)日最低體溫的差
C.駱駝在時(shí)刻的體溫與當(dāng)日平均體溫的絕對(duì)差
D.駱駝從0時(shí)到時(shí)刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是通過(guò)折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過(guò)程如下:
第一步:如圖,先把正方形ABCD對(duì)折,折痕為MN;
第二步:點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形
問(wèn)題:在折疊過(guò)程中,可以得到PB=PC;依據(jù)是________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動(dòng)點(diǎn)(與點(diǎn)C,B不重合),連接AP,延長(zhǎng)BC至點(diǎn)Q,使得∠PAC=∠QAC,過(guò)點(diǎn)Q作射線QH交線段AP于H,交AB于點(diǎn)M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大。ㄓ煤α的式子表示);
(2)用等式表示線段QC和BM之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,,延長(zhǎng)至點(diǎn),使得過(guò)點(diǎn)作,交線段于點(diǎn).設(shè)
(1)連結(jié),請(qǐng)求出的度數(shù)和的半徑(用的代數(shù)式表示). (直接寫出答案)
(2)證明:點(diǎn)是的中點(diǎn).
(3)如圖2,延長(zhǎng)至點(diǎn),使得, 連結(jié),交于點(diǎn)
①連結(jié),當(dāng)與四邊形其它三邊中的一邊相等時(shí),請(qǐng)求出所有滿足條件的的值.
②當(dāng)點(diǎn)關(guān)于直線對(duì)稱點(diǎn)恰好落在上,連結(jié).記和的面積分別為,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某乒乓球館使用發(fā)球機(jī)進(jìn)行輔助訓(xùn)練,出球口在桌面中線端點(diǎn)A處的正上方,假設(shè)每次發(fā)出的乒乓球的運(yùn)動(dòng)路線固定不變,且落在中線上,在乒乓球運(yùn)行時(shí),設(shè)乒乓球與端點(diǎn)A的水平距離為x(米),與桌面的高度為y(米),經(jīng)多次測(cè)試后,得到如下部分?jǐn)?shù)據(jù):
x/米 | 0 | 0.2 | 0.4 | 0.6 | 1 | 1.4 | 1.6 | 1.8 | … |
y/米 | 0.24 | 0.33 | 0.4 | 0.45 | 0.49 | 0.45 | 0.4 | 0.33 | … |
(1)由表中的數(shù)據(jù)及函數(shù)學(xué)習(xí)經(jīng)驗(yàn),求出y關(guān)于x的函數(shù)解析式;
(2)試求出當(dāng)乒乓球落在桌面時(shí),其落點(diǎn)與端點(diǎn)A的水平距離是多少米?
(3)當(dāng)乒乓球落在桌面上彈起后,y與x之間滿足.
①用含a的代數(shù)式表示k;
②已知球網(wǎng)高度為0.14米,球桌長(zhǎng)(1.4×2)米.若a=-0.5,那么乒乓球彈起后,是否有機(jī)會(huì)在某個(gè)擊球點(diǎn)可以將球沿直線扣殺到端點(diǎn)A?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com