【題目】九年級數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,得到某種運動服每月的銷量是售價的一次函數(shù),且相關(guān)信息如下表:
售價(元/件) | 100 | 110 | 120 | 130 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運動服的進價為每件60元,設(shè)售價為x元.
(1)請用含x的式子表示:①銷售該運動服每件的利潤是( )元;
(2)求月銷量y與售價x的一次函數(shù)關(guān)系式:
(3)設(shè)銷售該運動服的月利潤為W元,那么售價為多少元時,當(dāng)月的利潤最大?最大利潤是多少元?
【答案】(1)①x﹣60元;(2)y=﹣2x+400;(3)售價為130元時,當(dāng)月的利潤最大,最大利潤是9800元
【解析】
(1)根據(jù)利潤=售價﹣進價求出利潤;
(2)運用待定系數(shù)法求出月銷量y與售價x的一次函數(shù)關(guān)系式即可;
(3)根據(jù)月利潤=每件的利潤×月銷量列出函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤.
解:(1)銷售該運動服每件的利潤是:(x﹣60)元,
故答案為:x﹣60;
(2)設(shè)月銷量y與x的關(guān)系式為y=kx+b,
由題意得,,
解得.
則y=﹣2x+400;
(3)由題意得,W=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
∴當(dāng)x=130時,利潤最大值為9800元,
故售價為130元時,當(dāng)月的利潤最大,最大利潤是9800元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=﹣x2+mx+n與x軸的另一個交點為A,頂點為P.
(1)求3m+n的值;
(2)在該拋物線的對稱軸上是否存在點Q,使以C,P,Q為頂點的三角形為等腰三角形?若存在,求出有符合條件的點Q的坐標(biāo);若不存在,請說明理由.
(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個“M“形狀的新圖象,若直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四位正整數(shù)s,中間兩位均為3,則稱這個四位正整數(shù)為“三中全會數(shù)”;若將這個“三中全會數(shù)”的個位與千位交換位置得到新的正整數(shù)記為s',并記F(s)= .例如:F(4331)= .
(1)最小的“三中全會數(shù)”是 ;F(2331)= ;
(2)若“三中全會數(shù)”的個位與千位數(shù)字恰好相同,則又稱這個四位正整數(shù)為“三中對稱數(shù)”,若“三中全會數(shù)”x,y中x恰好是“三中對稱數(shù)”,且F(x)能被11整除;F(y)﹣2F(x)=31,求出“三中全會數(shù)”y的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,C、D分別為BM、AM上的點,四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點不與C、D重合,F為AB上一點,連接EF交AC于點N,連接DN、DE,若,,,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽寫”大賽預(yù)賽.各參賽選手的成績?nèi)鐖D:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
九(1)班 | 100 | m | 93 | 93 | 12 |
九(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)直接寫出表中m、n的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在(1)班,(1)班的成績比(2)班好”,但也有人說(2)班的成績要好,請給出兩條支持九(2)班成績好的理由;
(3)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額在四個“98分”的學(xué)生中任選二個,試求另外兩個決賽名額落在同一個班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在研究“利用木板余料裁出最大面積的矩形”時發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個矩形當(dāng)DE,EF是中位線時,所裁矩形的面積最大若木板余料的形狀改變,請你探究:
如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,,現(xiàn)從中裁出一個以為內(nèi)角且面積最大的矩形,則該矩形的面積為______.
如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量,,,且,從中裁出頂點M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上有兩動點C、D,點A、點B在直線l同側(cè),且A點與B點分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點CD之間的距離總為S米,使C到A的距離與D到B的距離之和最小,則AC+BD的最小值為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大課間到了,小明和小歡兩人打算從教室勻速跑到600米外的操場做課間操,剛出發(fā)時小明就發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡則直接前往操場,小明系好鞋帶后立即沿同一路開始追趕小歡,小明在途中追上小歡后繼續(xù)前行,小明到達操場時課間操還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場,設(shè)小明和小歡兩人想距s(米),小歡行走的時間為t(分鐘),s關(guān)于t的函數(shù)的部分圖象如圖所示,當(dāng)兩人第三次相距60米時,小明離操場還有_____米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com