【題目】如圖,直線y=x﹣3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線y=﹣x2+mx+n與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.
(1)求3m+n的值;
(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使以C,P,Q為頂點(diǎn)的三角形為等腰三角形?若存在,求出有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個(gè)“M“形狀的新圖象,若直線y=x+b與該“M”形狀的圖象部分恰好有三個(gè)公共點(diǎn),求b的值.
【答案】(1)9;(2)點(diǎn)Q的坐標(biāo)為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.
【解析】
(1)求出B、C的坐標(biāo),將點(diǎn)B、C的坐標(biāo)分別代入拋物線表達(dá)式,即可求解;
(2)分CP=PQ、CP=CQ、CQ=PQ,分別求解即可;
(3)分兩種情況,分別求解即可.
解:(1)直線y=x﹣3,令y=0,則x=3,令x=0,則y=﹣3,
故點(diǎn)B、C的坐標(biāo)分別為(3,0)、(0,﹣3),
將點(diǎn)B、C的坐標(biāo)分別代入拋物線表達(dá)式得:,解得: ,
則拋物線的表達(dá)式為:y=﹣x2+4x﹣3,則點(diǎn)A坐標(biāo)為(1,0),頂點(diǎn)P的坐標(biāo)為(2,1),
3m+n=12﹣3=9;
(2) ①當(dāng)CP=CQ時(shí),
C點(diǎn)縱坐標(biāo)為PQ中點(diǎn)的縱坐標(biāo)相同為﹣3,
故此時(shí)Q點(diǎn)坐標(biāo)為(2,﹣7);
②當(dāng)CP=PQ時(shí),
∵PC=,
∴點(diǎn)Q的坐標(biāo)為(2,1﹣)或(2,1+);
③當(dāng)CQ=PQ時(shí),
過(guò)該中點(diǎn)與CP垂直的直線方程為:y=﹣x﹣,
當(dāng)x=2時(shí),y=﹣,即點(diǎn)Q的坐標(biāo)為(2,﹣);
故:點(diǎn)Q的坐標(biāo)為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);
(3)圖象翻折后的點(diǎn)P對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為(2,﹣1),
①在如圖所示的位置時(shí),直線y=x+b與該“M”形狀的圖象部分恰好有三個(gè)公共點(diǎn),
此時(shí)C、P′、B三點(diǎn)共線,b=﹣3;
②當(dāng)直線y=x+b與翻折后的圖象只有一個(gè)交點(diǎn)時(shí),
此時(shí),直線y=x+b與該“M”形狀的圖象部分恰好有三個(gè)公共點(diǎn);
即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.
即:b=﹣3或﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖(1),在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)是(1,2),點(diǎn)B的坐標(biāo)是(3,4),過(guò)點(diǎn)A、點(diǎn)B作平行于x軸、y軸的直線相交于點(diǎn)C,得到Rt△ABC,由勾股定理可得,線段AB=.
得出結(jié)論:
(1)若A點(diǎn)的坐標(biāo)為(x1,y1),B點(diǎn)的坐標(biāo)為(x2,y2)請(qǐng)你直接用A、B兩點(diǎn)的坐標(biāo)表示A、B兩點(diǎn)間的距離;
應(yīng)用結(jié)論:
(2)若點(diǎn)P在y軸上運(yùn)動(dòng),試求當(dāng)PA=PB時(shí),點(diǎn)P的坐標(biāo).
(3)如圖(2)若雙曲線L1:y=(x>0)經(jīng)過(guò)A(1,2)點(diǎn),將線段OA繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)A恰好落在雙曲線L2:y=﹣(x>0)上的點(diǎn)D處,試求A、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=m.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為( 。
A. 193 B. 194 C. 195 D. 196
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利? 說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為1的正方形網(wǎng)格紙上有一個(gè)△ABC,頂點(diǎn)A,B,C及點(diǎn)O均在格點(diǎn)上請(qǐng)按要求完成以下操作或運(yùn)算:
(1)將△ABC繞點(diǎn)O旋轉(zhuǎn)90°,得到△A1B1C1;
(2)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對(duì)初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實(shí)驗(yàn)題目,物理用番號(hào)①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測(cè)試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.
(1)請(qǐng)用樹形圖法或列表法,表示某個(gè)同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對(duì)物理的①、②和化學(xué)的b、c號(hào)實(shí)驗(yàn)準(zhǔn)備得較好,他同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且,求這時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批襯衫,平均每天可售出20件,每件盈利40元為了擴(kuò)大銷售,增加盈利,商場(chǎng)決定采取降價(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),若毎件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.
若每件降價(jià)x元,每天盈利y元,求出y與x之間的關(guān)系式;
每件襯衫降價(jià)多少元時(shí),商場(chǎng)每天盈利最多?盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,得到某種運(yùn)動(dòng)服每月的銷量是售價(jià)的一次函數(shù),且相關(guān)信息如下表:
售價(jià)(元/件) | 100 | 110 | 120 | 130 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件60元,設(shè)售價(jià)為x元.
(1)請(qǐng)用含x的式子表示:①銷售該運(yùn)動(dòng)服每件的利潤(rùn)是( )元;
(2)求月銷量y與售價(jià)x的一次函數(shù)關(guān)系式:
(3)設(shè)銷售該運(yùn)動(dòng)服的月利潤(rùn)為W元,那么售價(jià)為多少元時(shí),當(dāng)月的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com